Our Ref: 13-562.05L

17th February 2015

Paul Elliott
Anthony Watson Chartered Architects
5 Douro Terrace
Sunderland
Tyne & Wear
SR2 7DX

Dear Paul,



Arc Environmental Ltd Solum House 1 Elliott Court St Johns Road Meadowfield Durham DH7 8PN

Re: Land adjacent to Temple Park Road, South Shields, NE34 0HH

#### 1.0 Introduction:-

At the request of Anthony Watson Chartered Architects of Sunderland, Tyne & Wear, and in conjunction with a Phase 1: Desk Top Study Report produced for the site (reference; 13-562, October 2013) Arc Environmental Limited (ARC) undertook a programme of follow-up intrusive ground investigation works. The site was formerly occupied by a Day Centre, and is located adjacent to Temple Green and Temple Park Road in South Shields, Tyne & Wear. The site is centered on National Grid Reference: 437150, 564480. The Day Centre structure was present on site at the time when the Phase 1: Desk Top Study Report was produced, and this was demolished and the site was levelled and topsoil deposits were imported, prior to the intrusive ground investigation works being undertaken. The site redevelopment works will involve the construction of residential apartments with onsite car parking facilities and occasional minor areas of soft landscaping.

The initial intrusive ground investigation works undertaken by ARC during 2013 comprised the sinking of 5 no. windowless sampling boreholes, labelled BH's 1 – 5, 2 no. deep rotary (open hole) boreholes, labelled RBH's 1 & 2, accompanied the installation of 3 no. combined ground gas & groundwater monitoring wells at the location of BH's 1, 2 & 4. Asbestos fibres were recorded within the imported topsoil deposits, during the initial contamination analysis undertaken by ARC and as a result these soils were removed off-site during 2014, post completion of the investigation works listed above. Following the recent removal of the imported topsoil deposits, a series (4 no.) of manually excavated trial pits, labelled TP's A – D were undertaken on Friday 5<sup>th</sup> December 2014 primarily to collect further soil samples to determine the levels of contamination present in the soils exposed at the surface.

The borehole and trial pit positions can be seen on the borehole and trial pit location plan attached, and this plan should be used for orientating purposes only, as the positions shown are approximate and the plan is not to a standard scale.

T: 0191 378 6380 F: 0191 378 0494



#### 2.0 Investigation Rationale:-

The intrusive ground investigation works undertaken by ARC were designed to determine the ground and groundwater conditions below the site area in order to facilitate with the construction of the proposed residential development. The rationale behind the location of each intrusive investigation position is summarised in Table 1 below.

Table 1

| Potential issue                                                    | Position / date of works |
|--------------------------------------------------------------------|--------------------------|
| Determine the nature of the underlying shallow ground              | BH's 1 – 5 (2013)        |
| conditions, including shallow groundwater                          |                          |
| Determine the levels of contamination present within the initial   | BH's 1 – 5 (2013)        |
| topsoil deposits with a view to determining the risks posed        |                          |
| towards the site end-users                                         |                          |
| Determine the risks posed to the site from past shallow coal       | RBH's 1 & 2 (2013)       |
| mining activities – A permit to enter or disturb the Coal          |                          |
| Authority's mining interests was obtained during October 2013 –    |                          |
| Permit reference; 8474                                             |                          |
| Determine the risks posed to the site from hazardous ground gas    | BH's 1, 2 & 4 (2013)     |
| production and migration                                           |                          |
| Further sampling to determine the levels of contamination          | TP's A – D (2014)        |
| present within the initial soil deposits, as current (2014) with a |                          |
| view to further determining the risks posed towards the site end-  |                          |
| users                                                              |                          |

#### 3.0 Ground Conditions:-

For an accurate description of the ground conditions encountered at each exploratory location, reference should be made to the borehole record sheets attached. It should be noted that there is always the possibility of variation in the ground conditions around and between the borehole locations. Made ground deposits were recorded at each borehole location to depths ranging from between c.0.40m to c.1.20m below existing site levels. Below the made ground deposits natural stiff (high strength) sandy, gravelly clay deposits were encountered. The natural clay deposits were proven to depths of between c.19.20m and c.19.50m below existing site levels before bedrock deposits were recorded. The underlying bedrock deposits consisted mainly of mudstone and these were proven to a maximum depth of c.35.00m below existing site levels. There was no evidence of the Hebburn Fell or Usworth coal seams (shallowest recorded coal seams identified within the Phase 1: Desk Top Study Report) being present below the site area. In addition, there was no evidence of ancient coal workings within the depths penetrated and as a result the site is not deemed to be at risk from future instability issues normally associated with past shallow coal mining activities. As a result no further works, or remediation measures are required with respect to the issue of shallow subjacent coal workings.

T: 0191 378 6380 F: 0191 378 0494



#### 3.0 Ground Conditions (Cont'd):-

Approximately 0.50m of the initial made ground deposits were stripped and removed off-site during 2014. Following on from this work, ARC attended site in order to obtain further representative samples of the soils left exposed at the surface. The soils present at the surface comprised mainly of dark brown / black, sandy, gravelly soil deposits, similar to those previously recorded on site within the boreholes.

#### 4.0 Groundwater:-

All of the boreholes and trial pits remained dry during the exploratory period. Based on the ground conditions identified, significant or heavy water ingresses are unlikely to occur within shallow construction related excavations. However, it would be prudent to allow for the introduction of temporary groundwater control techniques (i.e. sump pumping equipment), in order to take care of any localised ingresses of groundwater which may occur during the construction period, especially during the wetter periods of the year.

Combined ground gas & groundwater monitoring wells have been installed at the location of BH's 1, 2 & 4 to allow for further assessment in relation to gas and groundwater. The monitoring results obtained to date are discussed below in Section 5.0, sub-section 5.2 of this report.

#### 5.0 Insitu Testing:-

#### 5.1 Hand Shear Vane Tests:-

Insitu hand vane tests were carried out using a portable insitu hand vane tester (upper limit 130kN/m²) on the natural clay deposits encountered within the boreholes, the results are displayed on the borehole record sheets against the appropriate depth. The insitu hand vane tester takes direct readings of shear strength. Three vane sizes allow for the direct determination of undrained shear strength of extremely low strength to high strength clays. The peak vane value is determined by a calibrated scale ring built into the head assembly. The dial is used both to push the vane to the desired test depth and apply the shearing torque. Values ranging from between 72kN/m² (medium strength) up to 130kN/m² (high strength) have been recorded for the natural clay deposits encountered.

#### 5.2 Insitu Ground Gas & Groundwater Monitoring:-

Combined ground gas & groundwater monitoring standpipes were installed at the location of BH's 1, 2 & 4 primarily to determine the ground gas regime for the site.

T: 0191 378 6380 F: 0191 378 0494



#### 5.0 Insitu Testing (Cont'd):-

#### 5.2 Insitu Ground Gas & Groundwater Monitoring (Cont'd):-

A standard 50mm diameter HDPE standpipe, with gravel and / or geo-wrap surround, bentonite seal, gas valve cap and security cover, were installed to depths ranging from c.4.00m to c.5.00m below current ground levels, and the ground gas and water levels were allowed to reach equilibrium, prior to the first monitoring visit. Copies of the ground gas monitoring certificates can be seen attached to this report.

Monitoring was undertaken using a Gas Data GFM 430 soil gas analyser, with integral flow meter, and a Geotechnical Instruments electronic dip-meter. In accordance with CIRIA Report C665, November 2007, the current NHBC Document; Guidance on evaluation of development proposals on site where methane and carbon dioxide are present, Report Edition No. 04, March 2007 and BS8485:2007: Code of practice for the characterization and remediation from ground gas affected developments, it is felt that an adequate risk assessment for this site can be undertaken based on the following limiting factors:

- The proposed development is considered as a moderate sensitivity this is based on a residential development (flats).
- The risk associated with the gas generation potential of sources for this particular site is considered as very low. This has been based on the results of the Phase 1: Desk Top Study Report produced for the site.
- Therefore in accordance with CIRIA Report C665 (Assessing risks posed by hazardous ground gases to buildings, 2007), it was deemed appropriate to allow for 6 no. monitoring visits to be completed over a minimum period of 2 months. This would be adequate for the proposed development providing gas readings were obtained during periods of falling and low atmospheric pressures.

A summary of the results for the visits undertaken, compared with the 'inert' background gas levels are presented in Table 2 below and continues on the following page, and copies of the monitoring certificates can be found attached to this report.

Table 2

|                    |             | <b>Atmospheric</b> | <u>Water</u> | <u>CH₄</u> | <u>LEL</u> | <u>CO</u> 2   | <u>O</u> <sub>2</sub> | <u>Flow</u>   |
|--------------------|-------------|--------------------|--------------|------------|------------|---------------|-----------------------|---------------|
| <b>BH Position</b> | <u>Date</u> | <u>pressure</u>    | <u>(m</u>    | (%v/v)     | (%v/v)     | <u>(%v/v)</u> | (%v/v)                | <u>rate</u>   |
|                    |             | (mbar)             | <u>bgl)</u>  |            |            |               |                       | <u>(I/hr)</u> |
| <b>Background</b>  |             | 1                  | 1            | 0          | 0          | 0             | 21.0                  | 0             |
| BH1                |             | 993 – 995          | Dry          | 0.0        | 0.0        | 0.1           | 19.5                  | < 0.1         |
| BH2                | 08/11/2013  | (rising)           | Dry          | 0.0        | 0.0        | 0.1           | 19.4                  | < 0.1         |
| BH4                |             | (HSING)            | Dry          | 0.0        | 0.0        | 0.1           | 19.4                  | < 0.1         |

T: 0191 378 6380 F: 0191 378 0494



#### 5.0 Insitu Testing (Cont'd):-

#### 5.2 Insitu Ground Gas & Groundwater Monitoring (Cont'd):-

Table 2 (Cont'd)

|                    |             | <u>Atmospheric</u> |             |               | LEL           | <u>CO</u> <sub>2</sub> | <u>O</u> <sub>2</sub> | <u>Flow</u>   |
|--------------------|-------------|--------------------|-------------|---------------|---------------|------------------------|-----------------------|---------------|
| <b>BH Position</b> | <u>Date</u> | pressure           |             | <u>(%v/v)</u> | <u>(%v/v)</u> | <u>(%v/v)</u>          | <u>(%v/v)</u>         | <u>rate</u>   |
|                    |             | (mbar)             | <u>bgl)</u> |               |               |                        |                       | <u>(I/hr)</u> |
| Background         |             | ~                  | ~           | 0             | 0             | 0                      | 21.0                  | 0             |
| BH1                |             | 1008               | Dry         | 0.0           | 0.0           | 0.1                    | 19.3                  | < 0.1         |
| BH2                | 19/11/2013  | (steady)           | Dry         | 0.0           | 0.0           | 0.1                    | 19.4                  | < 0.1         |
| BH4                |             | (Steady)           | Dry         | 0.0           | 0.0           | 0.1                    | 19.4                  | < 0.1         |
| BH1                |             | 1022               | Dry         | 0.0           | 0.0           | 0.1                    | 19.5                  | < 0.1         |
| BH2                | 02/12/2013  | (steady)           | Dry         | 0.0           | 0.0           | 0.1                    | 19.3                  | < 0.1         |
| BH4                |             |                    | Dry         | 0.0           | 0.0           | 0.1                    | 19.4                  | < 0.1         |
| BH1                |             | 1002               | Dry         | 0.0           | 0.0           | 0.1                    | 19.2                  | < 0.1         |
| BH2                | 17/12/2013  | (steady)           | Dry         | 0.0           | 0.0           | 0.1                    | 19.3                  | < 0.1         |
| BH4                |             | (Steady)           | Dry         | 0.0           | 0.0           | 0.1                    | 19.2                  | < 0.1         |
| BH1                |             | 985 – 983          | Dry         | 0.0           | 0.0           | 0.1                    | 19.6                  | < 0.1         |
| BH2                | 07/01/2014  | (falling)          | Dry         | 0.0           | 0.0           | 0.1                    | 19.5                  | < 0.1         |
| BH4                |             | (railing)          | Dry         | 0.0           | 0.0           | 0.1                    | 19.5                  | < 0.1         |
| BH1                |             | 989                | Dry         | 0.0           | 0.0           | 0.1                    | 19.6                  | < 0.1         |
| BH2                | 27/01/2014  | (steady)           | Dry         | 0.0           | 0.0           | 0.1                    | 19.7                  | < 0.1         |
| BH4                |             | (Steauy)           | Dry         | 0.0           | 0.0           | 0.1                    | 19.6                  | < 0.1         |

There have been no concentrations of Methane (CH<sub>4</sub>) recorded within any of the gas monitoring wells. However, low level concentrations of Carbon Dioxide (CO<sub>2</sub>) have been consistently recorded at 0.1%v/v. Flow rates have been consistently recorded at 0.1%v/v. Flow rates have been consistently recorded at 0.1%v/v. Flow rates have been consistently recorded at 0.1%v/v. With monitoring completed during periods of low and falling pressure. The site can be characterised based on the limiting borehole gas volume flow for methane and carbon dioxide known as the Gas Screening Value (GSV) which in turn determines the level of protection required. In accordance with CIRIA Report C665, the risk to the development from ground gases has been assessed by converting the results in Table 2 to a GSV, calculated by multiplying the typical maximum gas concentrations with the recorded maximum positive flow rates (after Wilson & Card). Due to the lack of CH<sub>4</sub> recorded, there is no GSV value for Methane. In order to complete the risk assessment the maximum GSV for the CO<sub>2</sub> levels recorded has been determined by multiplying the maximum concentration recorded (0.1%v/v) by the maximum flow rate (0.11/hr). The GSV can be calculated as follows;

Carbon Dioxide GSV Carbon Dioxide GSV =  $0.001 \times 0.1 = 0.0001$ l/hr

T: 0191 378 6380 F: 0191 378 0494



#### 5.0 Insitu Testing (Cont'd):-

#### 5.2 Insitu Ground Gas & Groundwater Monitoring (Cont'd):-

The calculated GSV value of 0.0001l/hr for CO<sub>2</sub> places the site within the Characteristic Situation 1 (CS1) classification where no gas protection measures are deemed necessary.

When considering the results of the groundwater monitoring completed, it can be seen that boreholes remained dry during the monitoring period.

#### 6.0 Laboratory Testing:-

#### 6.1 Determination of pH & SO<sub>4</sub>:-

In total nine representative samples of the made ground and natural strata recovered within the boreholes and trial pits during the two phases of investigation works undertaken were tested in order to determine their acidic (pH) and soluble sulphate ( $SO_4$ ) levels. The results are shown in Table 3 below, and are also contained within the Chemtech Environmental Limited Analytical Reports, reference; 49559(1) & 53756 copies of which can be seen attached to this report.

Table 3

| <u>Position</u> | Depth (m)  | <u>pH</u> | <u>SO<sub>4</sub>(mg/l)</u> | Design SO <sub>4</sub> Class | ACEC Class |
|-----------------|------------|-----------|-----------------------------|------------------------------|------------|
| BH1             | 0.50*      | 8.0       | 78                          | DS-1                         | AC-1       |
| BH1             | 2.00^      | 8.2       | 41                          | DS-1                         | AC-1       |
| BH2             | 0.50*      | 7.7       | 23                          | DS-1                         | AC-1       |
| BH3             | 0.00-0.40* | 7.6       | 1359                        | DS-2                         | AC-2       |
| BH3             | 4.00-5.00^ | 8.5       | 133                         | DS-1                         | AC-1       |
| BH4             | 0.00-0.60* | 7.8       | 1064                        | DS-2                         | AC-2       |
| BH5             | 0.00-0.80* | 7.9       | 221                         | DS-1                         | AC-1       |
| TPA             | 0.00-0.50* | 7.8       | 89                          | DS-1                         | AC-1       |
| TPB             | 0.00-0.50* | 7.7       | 340                         | DS-1                         | AC-1       |
| TPC             | 0.00-0.50* | 7.9       | 126                         | DS-1                         | AC-1       |
| TPD             | 0.00-0.50* | 7.8       | 564                         | DS-2                         | AC-2       |

ACEC = Aggressive Chemical Environment for Concrete site classification, \* = Made ground, ^ = Natural strata

From these results it can be seen that the pH values for the samples tested range from 7.7 up to 8.5, and the amount of soluble sulphate present (23mg/I – 1359mg/I) falls below and above the negligible range of 500mg/I. Therefore, in accordance with BRE Special Digest 1: 2005, the site can be given a design class of DS-2.

T: 0191 378 6380 F: 0191 378 0494



#### 6.0 Laboratory Testing (Cont'd):-

#### 6.1 Determination of pH & SO<sub>4</sub> (Cont'd):-

When considering the nature of the materials tested and assuming mobile groundwater the assessment of the Aggressive Chemical Environment for Concrete (ACEC) is AC-2.

#### 6.2 Determination of Liquid & Plastic Limits (Cont'd):-

Two representative samples of the natural clay deposits encountered within the boreholes were tested in order to determine their liquid and plastic limits, so these materials could be classified. The results are contained in the PSL Analytical Report, ref no. PSL13/4399 a copy of which can be seen attached to this report. From the results it can be seen that the samples tested are inorganic in nature, and when plotted on the plasticity chart fall within the intermediate plasticity range and from the resulting plasticity indices have a moderate volume change potential, when taking into account the amount passing the 425µm sieve. Therefore, it can be seen that the natural clay deposits may undergo potentially significant changes in volume, if large changes in their natural moisture content were to occur due to seasonal variations or the like, and if new foundations were to be based within these materials, they would need to be taken down to a minimum depth of 0.90m below finished ground levels. The minimum foundation depth may also need to be increased if the proposed structures are within close proximity to existing or envisaged vegetation, even if trees are to be removed, in order to ensure no additional future shrinkage and swelling of these materials occurs. Reference should be made to BS5837: 2012, "Trees in Relation to Design Demolition & Construction".

#### 6.3 Ground Contamination Screening:-

To ascertain the nature and degree of contamination present within the shallow soil deposits present below the site, with a view to determining the risks posed towards the future site end-users, 9 no. representative samples of the made ground deposits were screened for the following range of analytes; Arsenic, Cadmium, Chromium (III & VI), Copper, Lead, Mercury, Nickel, Selenium, Zinc, Cyanide and Total Organic Carbon. This contamination suite is based on the current CLEA SGV listed analytes which includes some historical additions used to assess typical made ground i.e. disturbed natural strata mixed with anthropogenic debris, of an unknown source. For completeness, screening for Speciated Polycyclic Aromatic Hydrocarbons (PAH's), Speciated Total Petroleum Hydrocarbons (TPH's – Ali & Aro split) and the presence of asbestos has also been carried out. This suite of tests will also allow for the preliminary classification of the made ground for off-site disposal purposes. Leachate screening was also undertaken on selected samples of made ground to determine the risks posed to nearby sensitive receptors. The total analysis carried out is summarised on the following page.

T: 0191 378 6380 F: 0191 378 0494



#### 6.0 Laboratory Testing (Cont'd):-

#### 6.3 Ground Contamination Screening (Cont'd):-

#### Soils:-

- 9 no. soil samples screened using a Generic soils suite, comprising; Arsenic, Cadmium, Chromium III, Chromium VI, Copper, Lead, Mercury, Nickel, Selenium, Zinc & Cyanide
- 9 no. soil samples screened for the presence of asbestos fibres, with quantification testing on 2 no. samples
- 6 no. soil samples screened for Speciated Polycyclic Aromatic Hydrocarbons (PAH's)
- 6 no. soil samples screened for Speciated Total Petroleum Hydrocarbons (TPH's Ali & Aro split)
- 4 no. soil samples screened for Benzene, Toluene, Ethylbenzene, m & p-Xylene & o-Xylene (BTEX)

#### Leachate:-

- 4 no. soil samples chosen for a generic leachate suite which includes the following determinands; Arsenic, Boron, Cadmium, Chromium, Copper, Lead, Mercury, Nickel, Selenium, Zinc, pH, Sulphate and Cyanide
- 1 no. soil samples screened for leachable Speciated Polycyclic Aromatic Hydrocarbons (PAH's)
- 1 no. soil samples screened for leachable Speciated Total Petroleum Hydrocarbons (TPH's) & BTEX

A summary of the results, based on the soil concentrations recorded can be seen in Table 4, 5, 6, 7 & 8 below and continues on the following pages.

**Table 4 – Generic Suite** 

| <u>Analyte</u> | Target Conc. (C <sub>T</sub> ) | No. of Samples  | Max. Conc. (C <sub>M</sub> ) |
|----------------|--------------------------------|-----------------|------------------------------|
|                | mg/kg                          | <u>Screened</u> | recorded (mg/kg)             |
| <u>Generic</u> |                                |                 |                              |
| Arsenic        | 40 <sup>(1)</sup>              | 9               | 13                           |
| Cadmium        | 85 <sup>(1)</sup>              | 9               | 0.9                          |
| Chromium III   | 910 <sup>(1)</sup>             | 9               | 74                           |
| Chromium VI    | 6 <sup>(1)</sup>               | 9               | <1                           |
| Copper         | 7,100 <sup>(1)</sup>           | 9               | 114                          |
| Lead           | 310 <sup>(3)</sup>             | 9               | 279                          |
| Mercury        | 56 <sup>(1)</sup>              | 9               | 0.7                          |
| Nickel         | 180 <sup>(1)</sup>             | 9               | 40                           |
| Selenium       | 430 <sup>(1)</sup>             | 9               | 1.8                          |
| Zinc           | 40,000 <sup>(1)</sup>          | 9               | 493                          |
| Cyanide        | 34 <sup>(2)</sup>              | 9               | <2                           |

(1) = The LQM / CIEH S4UL's for Residential without homegrown produce, (2) = ATRISK<sup>SOIL</sup> SSV (2009), (3) = CL:AIRE C4SLs for Residential without homegrown produce

T: 0191 378 6380 F: 0191 378 0494



#### 6.0 Laboratory Testing (Cont'd):-

#### 6.3 Ground Contamination Screening (Cont'd):-

Table 5 – Speciated PAH's

| <u>Analyte</u>              | Target Conc. (C <sub>T</sub> )<br>mg/kg | No. of Samples Screened | Max. Conc. (C <sub>M</sub> ) recorded (mg/kg) |
|-----------------------------|-----------------------------------------|-------------------------|-----------------------------------------------|
| Speciated PAH's             |                                         |                         |                                               |
| Acenaphthene                | 6,000 <sup>(1)</sup>                    | 6                       | 1.28                                          |
| Acenaphthylene              | 6,000 <sup>(1)</sup>                    | 6                       | 0.7                                           |
| Anthracene                  | 37,000 <sup>(1)</sup>                   | 6                       | 3.92                                          |
| Benzo(a)anthracene          | 15 <sup>(1)</sup>                       | 6                       | 5.92                                          |
| Benzo(a)pyrene              | 3.2 <sup>(1)</sup>                      | 6                       | 4.56 (TPC)                                    |
| Benzo(b)fluoranthene        | 4.0 <sup>(1)</sup>                      | 6                       | 6.15 (TPC)                                    |
| Benzo(ghi)perylene          | 360 <sup>(1)</sup>                      | 6                       | 2.39                                          |
| Benzo(k)fluoranthene        | 110 <sup>(1)</sup>                      | 6                       | 2.61                                          |
| Chrysene                    | 32 <sup>(1)</sup>                       | 6                       | 5.01                                          |
| Dibenz(ah)anthracene        | 0.32(1)                                 | 6                       | 0.93 (TP's C, D, BH's                         |
| Diberiz (arr) aritir acerie | 0.32                                    |                         | 1 & 4)                                        |
| Fluoranthene                | 1,600 <sup>(1)</sup>                    | 6                       | 13.18                                         |
| Fluorene                    | 4,500 <sup>(1)</sup>                    | 6                       | 1.74                                          |
| Indeno(123cd)pyrene         | 46 <sup>(1)</sup>                       | 6                       | 2.78                                          |
| Naphthalene                 | 13 <sup>(1)</sup>                       | 6                       | 0.2                                           |
| Phenanthrene                | 1,500 <sup>(1)</sup>                    | 6                       | 9.38                                          |
| Pyrene                      | 3,800 <sup>(1)</sup>                    | 6                       | 9.46                                          |

<sup>(1) =</sup> The LQM / CIEH S4UL's, based on 6% SOM for Residential without homegrown produce

Table 6 - Speciated TPH's

| <u>Analyte</u>      | Target Conc. (C <sub>T</sub> )<br>mg/kg | No. of Samples Screened | Max. Conc. (C <sub>M</sub> ) recorded (mg/kg) |
|---------------------|-----------------------------------------|-------------------------|-----------------------------------------------|
| Speciated TPH       |                                         |                         |                                               |
| Aliphatic EC5-EC6   | 160 <sup>(1)</sup>                      | 6                       | < 0.1                                         |
| Aliphatic EC6-EC8   | 530 <sup>(1)</sup>                      | 6                       | < 0.1                                         |
| Aliphatic EC8-EC10  | 150 <sup>(1)</sup>                      | 6                       | < 0.1                                         |
| Aliphatic EC10-EC12 | 770 <sup>(1)</sup>                      | 6                       | 5                                             |
| Aliphatic EC12-EC16 | 4,300 <sup>(1)</sup>                    | 6                       | 28                                            |
| Aliphatic EC16-EC35 | 110,000 <sup>(1)</sup>                  | 6                       | 582                                           |
| Aliphatic EC35-EC44 | 110,000 <sup>(1)</sup>                  | 6                       | 149                                           |

<sup>(1) =</sup> The LQM / CIEH S4UL's, based on 6% SOM for Residential without homegrown produce

T: 0191 378 6380 F: 0191 378 0494



### 6.0 Laboratory Testing (Cont'd):-

#### 6.3 Ground Contamination Screening (Cont'd):-

Table 6 – Speciated TPH's (Cont'd)

| <u>Analyte</u>     | Target Conc. (C <sub>T</sub> ) | No. of Samples  | Max. Conc. (C <sub>M</sub> ) |
|--------------------|--------------------------------|-----------------|------------------------------|
|                    | mg/kg                          | <u>Screened</u> | recorded (mg/kg)             |
| Speciated TPH      |                                |                 |                              |
| Aromatic EC5-EC7   | 1,400 <sup>(1)</sup>           | 6               | < 0.01                       |
| Aromatic EC7-EC8   | 3,900 <sup>(1)</sup>           | 6               | < 0.01                       |
| Aromatic EC8-EC10  | 270 <sup>(1)</sup>             | 6               | < 0.01                       |
| Aromatic EC10-EC12 | 1,200 <sup>(1)</sup>           | 6               | <1                           |
| Aromatic EC12-EC16 | 2,500 <sup>(1)</sup>           | 6               | 1                            |
| Aromatic EC16-EC21 | 1,900 <sup>(1)</sup>           | 6               | 38                           |
| Aromatic EC21-EC35 | 1,900 <sup>(1)</sup>           | 6               | 30                           |
| Aromatic EC35-EC44 | 1,900 <sup>(1)</sup>           | 6               | 1                            |
| Benzene            | 1.4 <sup>(1)</sup>             | 4               | < 0.01                       |
| Toluene            | 3,900 <sup>(1)</sup>           | 4               | < 0.01                       |
| Ethylbenzene       | 440 <sup>(1)</sup>             | 4               | < 0.01                       |
| m & p-Xylene       | 450 <sup>(1)</sup>             | 4               | < 0.01                       |
| o-Xylene           | 480 <sup>(1)</sup>             | 4               | < 0.01                       |

<sup>(1) =</sup> The LQM / CIEH S4UL's, based on 6% SOM for Residential without homegrown produce

Due to some of the individual PAH's recorded (Benzo(a)pyrene, Benzo(b)fluoranthene & Dibenz(ah)anthracene), the made ground deposits present below the site represent a potential risk to the proposed end-users where exposure pathways will be available post completion of the proposed development and therefore protection measures, or further assessment will be required in order to break the linkage in the source-pathway-receptor model.

A suitable method of protection for this site would be to introduce a layer of clean cover (clean soil) within all areas of soft landscaping. Where the made ground lies below buildings and hardcover there will be no requirement for protection. Based on discussions held with South Tyneside Council, clean cover in the order of 600mm in thickness will suffice for this development site, based on the levels of PAH's identified.

Prior to undertaking any remedial measures a Remediation Strategy will need to be produced which details the remedial measures required in order to bring the risks currently posed by ground contamination to acceptable levels. The contents of this document will need to be agreed with South Tyneside Council prior to commencement.

T: 0191 378 6380 F: 0191 378 0494



#### 6.0 Laboratory Testing (Cont'd):-

#### 6.3 Ground Contamination Screening (Cont'd):-

Table 7 – Asbestos

| <u>Position</u> | <u>Depth</u> | <u>Chrysotile</u> | <u>Amosite</u> | Crocidolite | <u>Anthophyllite</u> | <u>Actinolite</u> | <u>Tremolite</u> |
|-----------------|--------------|-------------------|----------------|-------------|----------------------|-------------------|------------------|
|                 | <u>(m)</u>   | (white)           | (brown)        | (blue)      |                      |                   |                  |
| BH1             | 0.50         | NAD               | NAD            | NAD         | NAD                  | NAD               | NAD              |
| BH2             | 0.50         | NAD               | NAD            | NAD         | NAD                  | NAD               | NAD              |
| BH3             | 0.00-0.40    | YES               | NAD            | NAD         | NAD                  | NAD               | NAD              |
| BH4             | 0.00-0.60    | YES               | NAD            | NAD         | NAD                  | NAD               | NAD              |
| BH5             | 0.00-0.80    | YES               | NAD            | NAD         | NAD                  | NAD               | NAD              |
| TPA             | 0.00-0.50    | NAD               | NAD            | NAD         | NAD                  | NAD               | NAD              |
| TPB             | 0.00-0.50    | YES               | NAD            | NAD         | NAD                  | NAD               | NAD              |
| TPC             | 0.00-0.50    | YES               | NAD            | NAD         | NAD                  | NAD               | NAD              |
| TPD             | 0.00-0.50    | YES               | NAD            | NAD         | NAD                  | NAD               | NAD              |

NAD = No asbestos fibres detected

In order to more accurately assess the level of potential risk associated with the Chrysotile asbestos identified within 6 no. samples out of the 9 no. screened, quantitative asbestos screening has been carried out on 2 no. of the samples tested from TP's B & D. The results of this testing recorded concentrations of <0.001% w/w. Based on the quantitative testing results obtained it is felt that the levels of asbestos (Chrysotile) identified represent a low risk towards the future site end-users (human health).

However, when considering the risks to the construction workforce, adequate PPE will be required to provide protection against the levels of contaminants recorded during these investigation works. Similarly, the results can also be used by the Main Contractor / Project Coordinator, when devising an adequate Site Health & Safety Plan, in accordance with current CDM Regulations. In addition, when considering the presence of Asbestos below the site, precautions will need to be taken with regards to protect the health of construction workers and members of the public during any groundwork preparation.

These will include, suitable PPE (typically dust masks, disposal overalls, etc.), the dampening down of the made ground during any excavations to prevent wind-blown particles / fibres from becoming airborne (especially during dry periods), and excavations left open for a long period of time being suitably covered to prevent wind-blown particles / fibres escaping from open excavations, so as to provide protection for workers and the general public.

T: 0191 378 6380 F: 0191 378 0494



#### 6.0 Laboratory Testing (Cont'd):-

#### 6.3 Ground Contamination Screening (Cont'd):-

Based on the results of the soil screening carried out on the various samples chosen, appropriate leachate screening has been carried out and the results have been used to determine the potential impact on Controlled Waters. Where available, the results have been assessed against most appropriate Environmental Quality Standards (EQS) for priority substances and other certain pollutants, with the remaining analytes being assessed against current UK Drinking Water Standards (DWS). A summary of the results for this Level 1 Risk Assessment can be seen in Table 9 on the following page.

The Speciated PAH's & Speciated TPH's all fall below the analytical detection limits, and as a result these have not been included within Table 8 below.

Table 8

| LEVEL 1        |                       |                                        | Site Data                                   | 1                        |
|----------------|-----------------------|----------------------------------------|---------------------------------------------|--------------------------|
| <u>Analyte</u> | Critical Conc. (Cc)   | Max. Conc.<br>(C <sub>M</sub> ) (μg/I) | Has max. C <sub>M</sub> Value Been Exceeded | Number of samples<br>>Cc |
| Arsenic        | 50 <sup>(1)</sup>     | 2.03                                   | NO                                          | 0                        |
| Boron          | 2000 <sup>(1)</sup>   | 55                                     | NO                                          | 0                        |
| Cadmium        | 5 <sup>(1)</sup>      | < 0.07                                 | NO                                          | 0                        |
| Chromium       | 5-250 <sup>(1)</sup>  | 3.0                                    | NO                                          | 0                        |
| Copper         | 1-28 <sup>(1)</sup>   | 7.7                                    | NO                                          | 0                        |
| Lead           | 4-250 <sup>(1)</sup>  | 1.9                                    | NO                                          | 0                        |
| Mercury        | 1 <sup>(1)</sup>      | 0.102                                  | NO                                          | 0                        |
| Nickel         | 50-200 <sup>(1)</sup> | 2.6                                    | NO                                          | 0                        |
| Selenium       | 10 <sup>(2)</sup>     | 0.47                                   | NO                                          | 0                        |
| Zinc           | 8-500 <sup>(2)</sup>  | 4                                      | NO                                          | 0                        |
| Cyanide        | 50 <sup>(2)</sup>     | <20                                    | NO                                          | 0                        |

<sup>(1) =</sup> UK EQS Freshwater, (2) = UK Drinking Water Standard (DWS), (3) = UK Drinking Water Standard for PAH's. (4) = Analytical Detection Limit

The leachate results shown in Table 9, as well as the levels of Speciated PAH's and Speciated TPH's fall below the chosen critical concentration values for this site and as a result the risk posed towards Controlled Waters from the identified on-site ground contamination sources is deemed to be negligible.

At this stage based on the contamination screening results obtained (generic, Speciated PAH's, Speciated TPH's and Asbestos), it is possible that the made ground deposits will be classified as Non-Hazardous for off-site disposal purposes However, this is an approximation only as definitive waste disposal classifications should be confirmed with individual landfill operators, in accordance with their site licenses. To assist with off-site disposal, Waste Acceptance Criteria (WAC) screening has been undertaken on 2 no. soil samples.

T: 0191 378 6380 F: 0191 378 0494



#### 6.0 Laboratory Testing (Cont'd):-

#### 6.3 Ground Contamination Screening (Cont'd):-

Therefore all of the contamination results attached should be presented to, and discussions held with, appropriate licensed operators for confirmation of disposal classification.

The results of all the testing undertaken on this site can be found in the Chemtech Environmental Limited Analytical Reports, reference no's. 49559(1), 53756(1) & 53848, copies of which can be seen attached.

#### 7.0 Foundations Options:-

Based on the nature of the natural clay deposits, these deposits will be a suitable foundation bearing medium for the proposed residential development (apartments) where a maximum allowable bearing pressure of 150kN/m² will be available. Foundations should be based at a minimum depth of 0.90m below finished ground levels and based wholly within the natural stiff (high strength) clay deposits. Foundation excavation depths may vary, due to the presence of made ground and / or buried obstructions.

Since variations in the ground conditions have been identified below the site area within the boreholes and trial pits, it is recommended that all foundation excavations are inspected by a suitably qualified Geotechnical Engineer in order to confirm the correct founding strata has been reached prior to pouring the concrete.

#### 8.0 General Comments:-

For future site works, adequate lateral trench support will be required for excavations, in order to prevent trench wall collapse or over excavations, as well as to create a safe working environment below a depth of 1.20m.

Any excavations on this site should remain open for as short a period as possible, since some of these materials may be susceptible to deterioration, if left open to the natural elements for any significant period of time. Reference to CIRIA 97 'Trenching Practice' would be beneficial to establish a suitable means of support or battering of excavation sides during construction. It is also recommended that adequate surface drainage is designed and installed by a competent contractor, in order to prevent surface water 'ponding' or collection, during and post construction, particularly where the existing surface drainage system is disrupted or damaged.

T: 0191 378 6380 F: 0191 378 0494



#### 8.0 General Comments (Cont'd):-

In addition, for deeper excavations, drainage, service runs or the like that may pass close to or beneath any existing or proposed new foundations, these should be undertaken with care and completed prior to the preparation of any new foundations, so as not to allow any loose or granular material to move or 'flow', thus causing settlement to occur to any new or adjacent old foundation based at a higher level.

An "observational technique" can be applied to the design and construction of any new foundations on this site, and where ground conditions seem to vary from that indicated from the works completed on site to date, then advice from a suitably qualified Engineering Geologist / Geotechnical Engineer should be sought.

We trust the contents of this ground investigation report are to your satisfaction, and if you require any further information or clarification, please do not hesitate to contact us.

Yours sincerely,

For and on behalf of Arc Environmental Limited

Terry McMenam BSc (Hons) CEnv CSci MIEnvSc FGS MCMI MIoD

Director

T: 0191 378 6380 F: 0191 378 0494



# Location Plan Existing Site Layout Plan Proposed Development Layout Plan Site Photographic Record Sheet (November 2014)

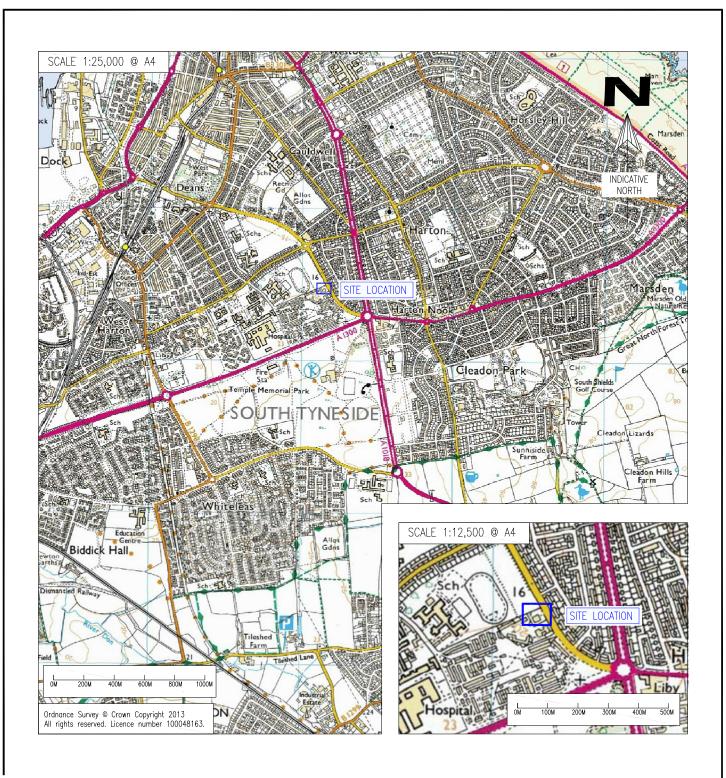
T: 0191 378 6380 F: 0191 378 0494



# Borehole & Trial Pit Location Plan Borehole Record Sheets Gas Monitoring Certificates

T: 0191 378 6380 F: 0191 378 0494




# **Laboratory Results**

T: 0191 378 6380 F: 0191 378 0494



# Location Plan Existing Site Layout Plan Proposed Development Layout Plan Site Photographic Record Sheet (November 2014)

T: 0191 378 6380 F: 0191 378 0494

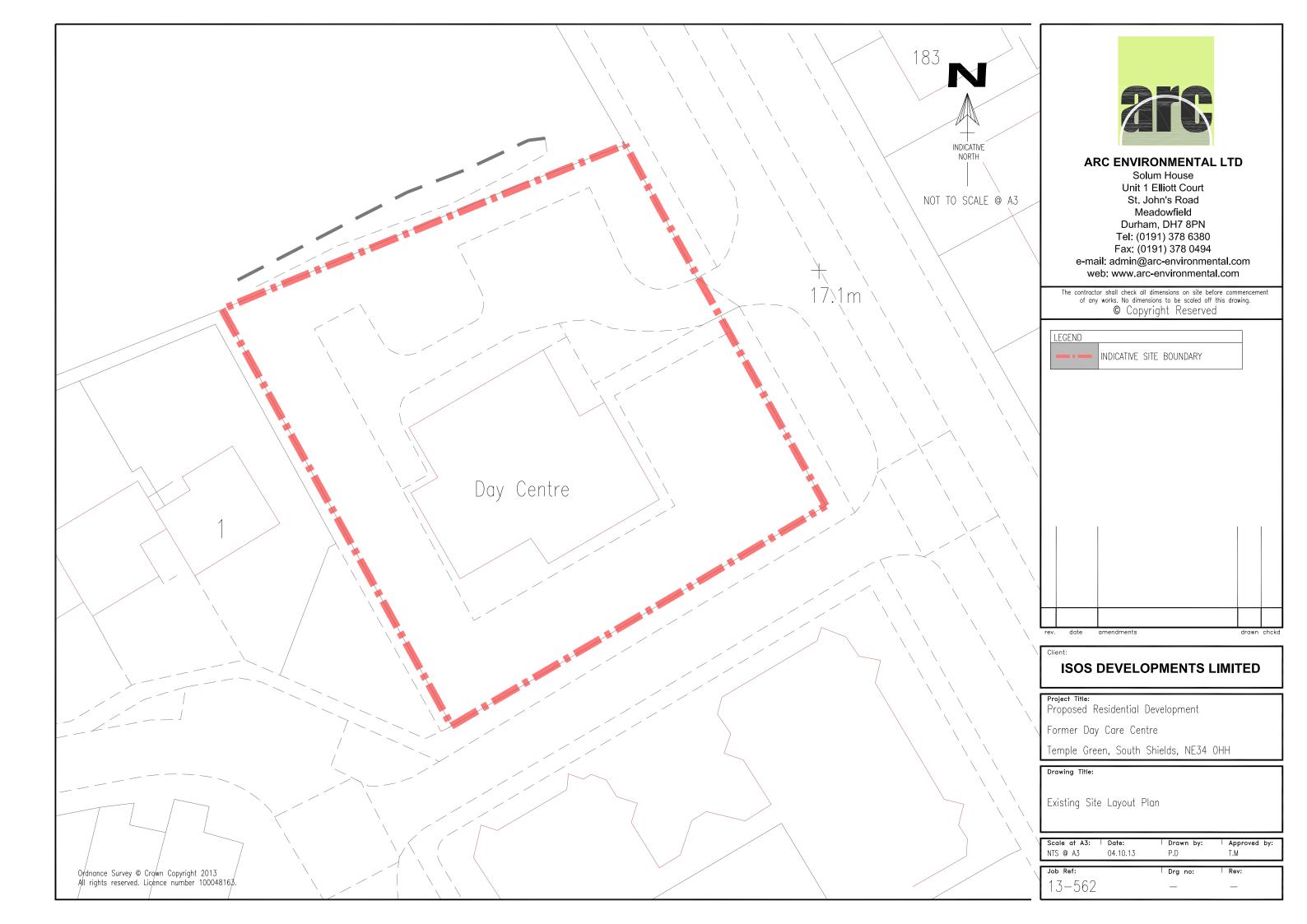


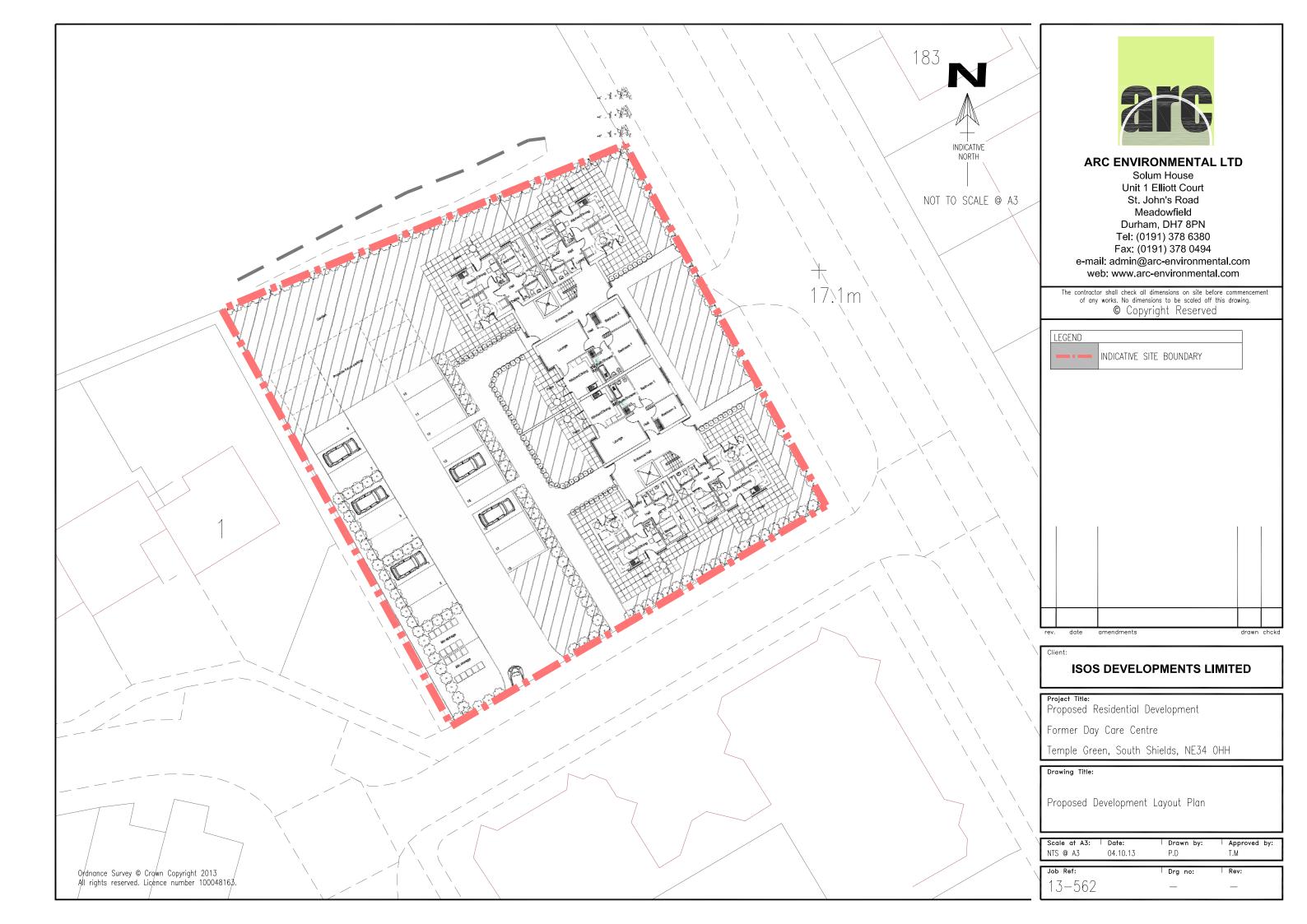
#### Client:

#### ISOS DEVELOPMENTS LIMITED

Project Title:
Proposed Residential Development
Former Day Care Centre, Temple
Green, South Shields, NE34 OHH

Drawing Title:
Location Plan


| Job Reference:<br>13-562 | Drawing Number:<br>— | Revision:                                                                                                                                              |
|--------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Drawn by:<br>P.D         | Date:<br>03.10.13    | Scale at A4:<br>As Shown                                                                                                                               |
| Checked by:              | Approved by:         | The contractor shall check all dimensions on site before commencement of any works. No dimensions to be scaled off this drawing.  © Copyright Reserved |


| ev. | date | amendments | drawn | chckd |
|-----|------|------------|-------|-------|
|     |      |            |       |       |
|     |      |            |       |       |
|     |      |            |       |       |
|     |      |            |       |       |
|     |      |            |       |       |

#### ARC ENVIRONMENTAL LTD

Solum House
Unit 1 Elliott Court
St. John's Road
Meadowfield
Durham
DH7 8PN
Tel: (0191) 378 6380
Fax: (0191) 378 0494
e-mail: admin@arc-environmental.com
web: www.arc-environmental.com











## ARC ENVIRONMENTAL LTD

Solum House Unit 1 Elliott Court St. John's Road Meadowfield Durham, DH7 8PN Tel: (0191) 378 6380 Fax: (0191) 378 0494 e-mail: admin@arc-environmental.com

web: www.arc-environmental.com

The contractor shall check all dimensions on site before commencement of any works. No dimensions to be scaled off this drawing.

© Copyright Reserved



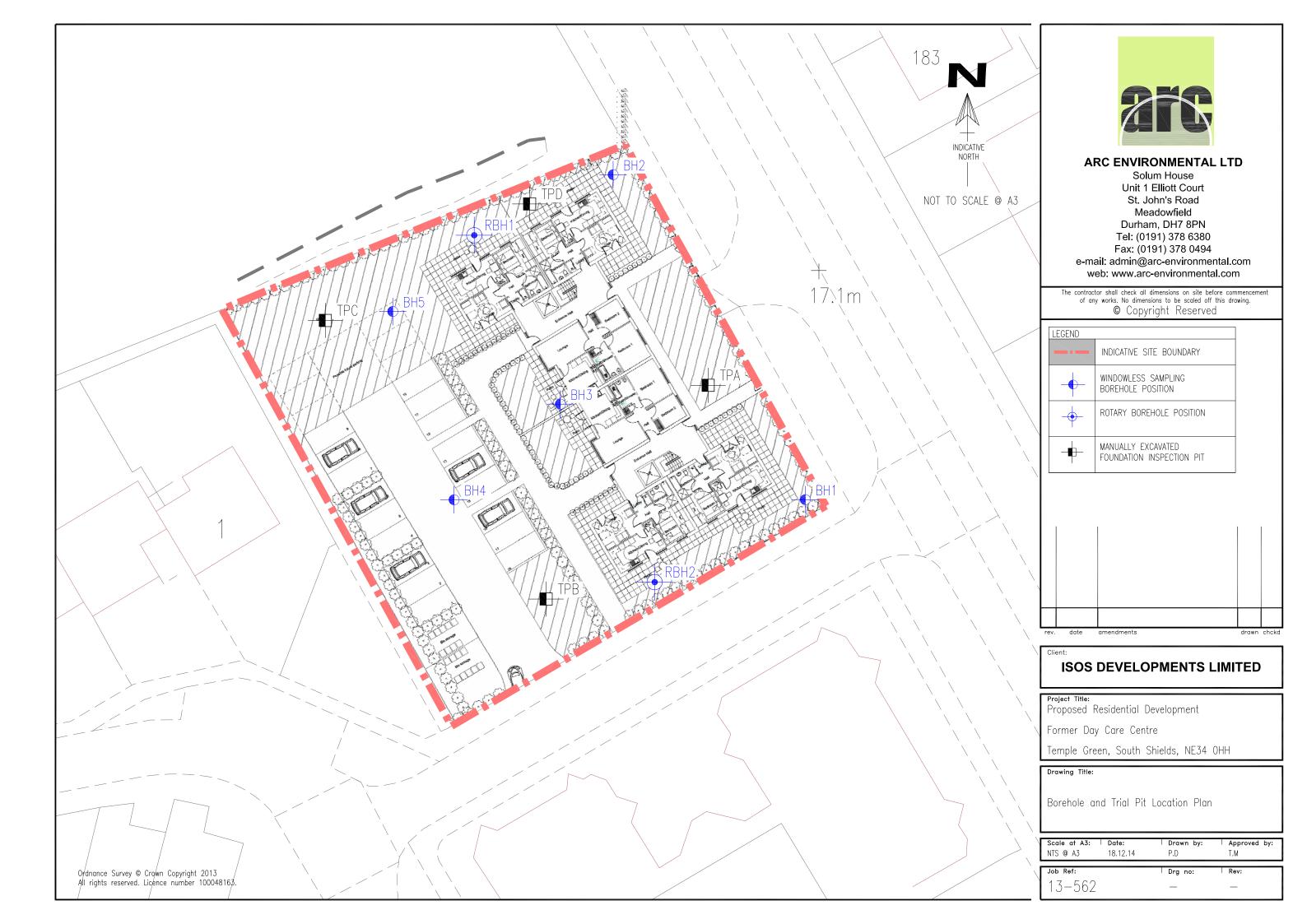
## ISOS DEVELOPMENTS LIMITED

Project Title: Proposed Residential Development

Former Day Care Centre

Temple Green, South Shields, NE34 OHH

Site Photographic Record Sheet — November 2014


| Scale at A3: | Date:    | Drawn by: | Approved by: |
|--------------|----------|-----------|--------------|
| NTS @ A3     | 18.12.14 | P.D       | T.M          |

| Job Ref:           | Drg no: | Rev: |
|--------------------|---------|------|
| Job Ref:<br>13—562 | _       | _    |



# Borehole & Trial Pit Location Plan Borehole Record Sheets Gas Monitoring Certificates

T: 0191 378 6380 F: 0191 378 0494





| Project           |            |                |                |                    |               |                     |               |                        |                         |                             |                          |                         | BOREH                        | OLE           | No                       |
|-------------------|------------|----------------|----------------|--------------------|---------------|---------------------|---------------|------------------------|-------------------------|-----------------------------|--------------------------|-------------------------|------------------------------|---------------|--------------------------|
|                   | posed N    |                |                | ents at 7          | Γemple        | Green, S            |               |                        |                         |                             |                          |                         | ВІ                           | <b>-</b> 11   |                          |
| Job No            | 5.60       | Da             |                | 0 10 10            |               | Ground L            | evel (        | m)                     | Co-Oı                   | rdinates ()                 |                          |                         |                              | ••            |                          |
| Contractor        | -562       |                |                | 2-10-13            |               |                     |               |                        |                         |                             |                          |                         | Sheet                        |               |                          |
|                   |            | nmenta         | 1 Ltd          | 1.                 |               |                     |               |                        |                         |                             |                          |                         |                              | of 1          |                          |
| SAMPL             |            |                |                |                    |               |                     |               |                        | STRA                    | ΤΔ                          |                          |                         |                              |               | ję.                      |
|                   |            |                | Water          | Dadwaad            |               | Depth               |               |                        | BIKA                    | 17.                         |                          |                         |                              | ogy           | ∠ Instrument/ Z Backfill |
| Depth             | Type<br>No | Test<br>Result | ≱              | Reduced<br>Level   | Legend        | (Thick-<br>ness)    |               |                        |                         | DESCI                       | RIPTION                  |                         |                              | Geology       | Instru<br>Back           |
|                   |            |                |                |                    |               | 0.10                |               |                        |                         | soil (MAD                   |                          |                         |                              |               | V R                      |
| 0.20              | В          |                |                |                    |               | (0.50)              | of as         | i dark bi<br>sh coal b | rown sand<br>orick cond | dy gravelly<br>crete and de | clay conta<br>olomite (M | aning occas<br>IADE GRO | sional fragments<br>UND).    |               |                          |
| 0.50              | B/J        |                |                |                    |               | 0.60                |               |                        |                         |                             |                          |                         |                              |               |                          |
|                   |            |                |                |                    |               | 0.80                |               |                        |                         |                             |                          |                         | DE GROUND).                  |               |                          |
| -                 |            |                |                |                    |               | 4                   | Stiff<br>Occa | (high s<br>asional o   | trength) r<br>cobbles n | nedium bro<br>oted (PELA    | own very sa<br>AW CLAY   | andy gravel<br>MEMBER   | ly CLAY.<br>R).              |               |                          |
| 1.00<br>1.00      | B<br>V     | 110kN/n        | n <sup>2</sup> |                    |               | 4                   |               |                        |                         | `                           |                          |                         | •                            |               |                          |
|                   |            |                |                |                    | 0             | ·}-                 |               |                        |                         |                             |                          |                         |                              |               |                          |
| 1.50              | В          |                |                |                    |               | 4                   |               |                        |                         |                             |                          |                         |                              |               |                          |
| 1.50              | V          | 130kN/n        | nf             |                    | 0-0-0-        | -<br>-<br>-         |               |                        |                         |                             |                          |                         |                              |               |                          |
| 2.00              | D          |                |                |                    | - 0 -         | <del> </del>        |               |                        |                         |                             |                          |                         |                              |               |                          |
| 2.00              | B<br>V     | 130kN/n        | n²             |                    | 200           | - <del> -</del><br> |               |                        |                         |                             |                          |                         |                              |               |                          |
|                   |            |                |                |                    |               | (3.20)              |               |                        |                         |                             |                          |                         |                              |               |                          |
| 2.50<br>2.50      | B<br>V     | 130kN/n        | 2              |                    | -             |                     |               |                        |                         |                             |                          |                         |                              |               |                          |
| 2.30              | •          | I SUKIN/II     | 1              |                    | - 0           | <del>-</del>        |               |                        |                         |                             |                          |                         |                              |               |                          |
| 3.00              | В          |                |                |                    |               | 1                   |               |                        |                         |                             |                          |                         |                              |               |                          |
| 3.00              | V          | 130kN/n        | n²             |                    | - 0           | .f<br>-[            |               |                        |                         |                             |                          |                         |                              |               |                          |
|                   |            |                |                |                    |               | <u>q</u>            |               |                        |                         |                             |                          |                         |                              |               |                          |
| 3.50<br>3.50      | B<br>V     | 130kN/n        | n²             |                    | 000           | -                   |               |                        |                         |                             |                          |                         |                              |               |                          |
|                   |            |                |                |                    | 2 0           | 4.00                |               |                        |                         |                             |                          |                         |                              |               |                          |
| 4.00              | В          |                |                |                    |               | 4.00                | Bore          | hole ter               | rminated                | at a depth o                | of c.4.00m.              |                         |                              |               | <u> </u>                 |
| 4.00              | V          | 130kN/n        | nf             |                    |               | -                   |               |                        |                         |                             |                          |                         |                              |               |                          |
|                   |            |                |                |                    |               | -                   |               |                        |                         |                             |                          |                         |                              |               |                          |
|                   |            |                |                |                    |               | -                   |               |                        |                         |                             |                          |                         |                              |               |                          |
|                   |            |                |                |                    |               | -                   |               |                        |                         |                             |                          |                         |                              |               |                          |
| -                 |            |                |                |                    |               | -                   |               |                        |                         |                             |                          |                         |                              |               |                          |
|                   |            |                |                |                    |               | -                   |               |                        |                         |                             |                          |                         |                              |               |                          |
| <del>.</del><br>- |            |                |                |                    |               | _                   |               |                        |                         |                             |                          |                         |                              |               |                          |
|                   |            |                |                |                    |               | _                   |               |                        |                         |                             |                          |                         |                              |               |                          |
|                   |            |                |                |                    |               | -                   |               |                        |                         |                             |                          |                         |                              |               |                          |
| Bori              | ng Prog    | gress ar       |                | ater Ob            |               |                     |               | C                      | hisellin                | g                           | Water                    | Added                   | GENE                         |               |                          |
| Date              | Time       | Depth          | I              | Casin<br>Depth   I | ig<br>Dia. mm | Water<br>Dpt        | F             | rom                    | То                      | Hours                       | From                     | То                      | REMA                         |               | 5                        |
|                   |            |                |                |                    |               |                     |               |                        |                         |                             |                          |                         | WATER: Bore remained DRY     | hole<br>durin | g the                    |
|                   |            |                |                |                    |               |                     |               |                        |                         |                             |                          |                         | remained DRY exploratory per | riod.         | J .                      |
|                   |            |                |                |                    |               |                     |               |                        |                         |                             |                          |                         |                              |               |                          |
|                   |            |                |                |                    |               |                     |               |                        |                         |                             |                          |                         |                              |               |                          |
|                   |            |                |                |                    |               |                     |               |                        |                         |                             |                          |                         |                              |               |                          |
| All dimens        |            | netres         | Clien          |                    |               | opments             |               | Metho                  |                         |                             |                          |                         | Logged By                    |               |                          |
|                   | e 1:37.5   |                |                | Limit              |               | -                   |               | Plant I                | Used W                  | indowles                    | s Sampli                 | ng                      | SH                           | I             |                          |



| Project             |            |                     |       |               |                |                           |             |                            |                         |                        |                       | BOREH                                          | OLE            | No                          |
|---------------------|------------|---------------------|-------|---------------|----------------|---------------------------|-------------|----------------------------|-------------------------|------------------------|-----------------------|------------------------------------------------|----------------|-----------------------------|
| Prop                | osed N     | lew Apa             | rtme  | ents at       | Temple         | Green, S                  | South Shie  | lds                        |                         |                        |                       |                                                | 10             |                             |
| Job No              |            | Date                | е     |               |                | Ground L                  | evel (m)    | Co-Oı                      | rdinates ()             |                        |                       | – Bi                                           | <del>1</del> 2 |                             |
| 13-5                | 562        |                     | 22    | 2-10-1        | .3             |                           |             |                            |                         |                        |                       |                                                |                |                             |
| Contractor          |            | •                   |       |               |                |                           |             | •                          |                         |                        |                       | Sheet                                          |                |                             |
| Arc                 | Enviro     | nmental             | Ltd   |               |                |                           |             |                            |                         |                        |                       | 1 c                                            | f 1            |                             |
| SAMPLE              | ES & T     | ESTS                | er    |               |                | 1                         |             | STRA                       | TA                      |                        |                       |                                                | S:             | nent/                       |
| Depth               | Type<br>No | Test<br>Result      | Water | Reduc<br>Leve | ed<br>l Legend | Depth<br>(Thick-<br>ness) |             |                            | DESCI                   | RIPTION                |                       |                                                | Geology        | ∠ Instrument/<br>∠ Backfill |
| 0.20                | В          |                     |       |               |                | 0.10                      | Stiff media | ım brown                   | very sandy              | gravelly cl            | ay containi           | ng occasional<br>DE GROUND).                   |                |                             |
| 0.50                | B/J        |                     |       |               |                | (0.80)                    |             |                            |                         |                        |                       |                                                |                |                             |
| 1.00                | B<br>V     | 90kN/m²             |       |               | , 0            | 0.90                      | Stiff (high | strength) r<br>l cobbles n | nedium bro<br>oted (PEL | own very sa<br>AW CLAY | andy gravel<br>MEMBER | ly CLAY.<br>.).                                |                |                             |
| 1.50                | B<br>V     | 72kN/m <sup>2</sup> |       |               |                |                           |             |                            |                         |                        |                       |                                                |                |                             |
| - 2.00<br>- 2.00    | B<br>V     | 88kN/m²             |       |               |                | (3.10)                    |             |                            |                         |                        |                       |                                                |                |                             |
| 2.50                | B<br>V     | 130kN/m²            | !     |               |                | - (3.10)<br>-<br>-<br>-   |             |                            |                         |                        |                       |                                                |                |                             |
| 3.00                | B<br>V     | 130kN/m²            | !     |               |                | -                         |             |                            |                         |                        |                       |                                                |                |                             |
| 3.50                | B<br>V     | 130kN/m²            | !     |               |                | 4.00                      |             |                            |                         |                        |                       |                                                |                |                             |
| 4.00                | B<br>V     | 130kN/m             | !     |               |                | -                         | Borehole to | erminated :                | at a depth o            | of c.4.00m.            |                       |                                                |                |                             |
|                     |            |                     |       |               |                | -                         |             |                            |                         |                        |                       |                                                |                |                             |
| -<br> -<br> -<br> - |            |                     |       |               |                | -<br>-<br>-               |             |                            |                         |                        |                       |                                                |                |                             |
|                     |            |                     |       |               |                | -<br>-<br>-<br>-          |             |                            |                         |                        |                       |                                                |                |                             |
| Borin               | g Prog     | ress and            | l W   | ater C        | )<br>bservati  | ions                      |             | Chisellin                  | g                       | Water                  | Added                 | GENE                                           | RAI            | 1                           |
|                     | Time       | Depth               |       |               | ing<br>Dia. mm | Water<br>Dpt              | From        | То                         | Hours                   | From                   | То                    | REMA                                           |                |                             |
|                     |            |                     |       | ı             | ,              | _ <u> </u>                |             |                            |                         |                        |                       | WATER: Bore<br>remained DRY<br>exploratory per | durin          | g the                       |

AGS3 UK BH BHS 13-562.GPJ AGS3\_

All dimensions in metres Scale 1:37.5 Client ISOS Developments Limited Method/ Plant Used Windowless Sampling SH



| Project             |                       |          |                |                    |             |                  |        |                    |                          |                          |                        |                       | BOREH                                          | OLE                    | E No        |
|---------------------|-----------------------|----------|----------------|--------------------|-------------|------------------|--------|--------------------|--------------------------|--------------------------|------------------------|-----------------------|------------------------------------------------|------------------------|-------------|
|                     | posed N               |          |                | ents at T          | emple       | Green, S         |        |                    |                          |                          |                        |                       | В                                              | <del>1</del> 3         |             |
| Job No              | 562                   | Dat      |                | 7-11-13            |             | Ground L         | evel ( | m)                 | Co-Or                    | rdinates ()              |                        |                       |                                                |                        |             |
| Contractor          | 302                   |          | U              | /-11-13            |             |                  |        |                    |                          |                          |                        |                       | Sheet                                          |                        |             |
|                     | Enviro                | nmental  | Ltd            | l.                 |             |                  |        |                    |                          |                          |                        |                       | 1 0                                            | of 1                   |             |
| SAMPLI              |                       |          |                |                    |             |                  |        |                    | STRA                     | ΤΔ                       |                        |                       |                                                |                        | æ           |
|                     |                       | Test     | Water          | Reduced            |             | Depth            |        |                    | SIKA                     |                          |                        |                       |                                                | Geology                | Instrument/ |
| Depth               | Type<br>No            | Result   | 5              | Reduced<br>Level   | Legend      | (Thick-<br>ness) |        |                    |                          |                          | RIPTION                |                       |                                                | Geo                    | Instr       |
| 0.00-0.40           | B/J                   |          |                |                    |             | (0.40)           | and    | dolomi             | te (MADE                 | E GROUNI                 | O).                    |                       | ents of concrete                               |                        |             |
| 0.40-1.00           | В                     |          |                |                    |             |                  | Stiff  | (high s<br>asional | strength) n<br>cobbles n | nedium bro<br>oted (PELA | own very sa<br>AW CLAY | andy gravel<br>MEMBER | ly CLAY.                                       |                        |             |
| 1.00-2.00<br>1.00   | B<br>V                | 100kN/m  | 1 <sup>2</sup> |                    |             | -                |        |                    |                          |                          |                        |                       |                                                |                        |             |
| 2.00-3.00<br>2.00   | B<br>V                | 120kN/m  | î              |                    |             |                  |        |                    |                          |                          |                        |                       |                                                |                        |             |
| 3.00-4.00<br>3.00   | B<br>V                | 120kN/m  | 2              |                    |             | (4.60)           |        |                    |                          |                          |                        |                       |                                                |                        |             |
| 4.00-5.00<br>4.00   | B<br>V                | 120kN/m  | 12             |                    |             |                  |        |                    |                          |                          |                        |                       |                                                |                        |             |
| 5.00                | V                     | 120kN/m  | 12             |                    | , 0         | 5.00             | Bore   | ehole te           | rminated a               | at a depth o             | of c.5.00m.            |                       |                                                |                        |             |
|                     |                       |          |                |                    |             | -<br>-<br>-<br>- |        |                    |                          |                          |                        |                       |                                                |                        |             |
| Borir               | ng Pros               | ress an  | d W            | ater Ob            | servati     | ions             |        |                    | hisellin                 | g                        | Water                  | Added                 | GENE                                           | RAI                    |             |
|                     | Time                  | Depth    |                | Casin<br>Depth   D |             |                  | F      | rom                | То                       | Hours                    | From                   | То                    | REMA                                           |                        |             |
|                     |                       |          |                |                    |             |                  |        |                    |                          |                          |                        |                       | WATER: Bore<br>remained DRY<br>exploratory per | hole<br>durir<br>riod. | ng the      |
|                     |                       |          |                |                    |             |                  |        |                    |                          |                          |                        |                       |                                                |                        |             |
| All dimens<br>Scale | ions in r<br>e 1:37.5 | netres C | lient          | ISOS<br>Limit      | Devel<br>ed | opments          |        | Metho<br>Plant     |                          | indowles                 | s Sampli               | ng                    | Logged By DO                                   | )                      |             |



| Project             |                       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                      |                     |                          |                        |                        | BOREH                                        | OLE           | No            |
|---------------------|-----------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------|----------------------|---------------------|--------------------------|------------------------|------------------------|----------------------------------------------|---------------|---------------|
|                     | osed N                |                | Reduced Legend (Thick, mess)    Continue   C |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BI               | H4             |                      |                     |                          |                        |                        |                                              |               |               |
| Job No              | <b>7</b> - 2          | Da             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . <del></del>                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ground L         | evel (n        | n)                   | Co-Or               | dinates ()               |                        |                        |                                              |               |               |
| Contractor          | 562                   |                | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | STRATA   Depth   Co-Ordinates () |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                      |                     |                          |                        | Sheet                  |                                              |               |               |
|                     | Enviro                | nmanta         | 1 T tc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                | STRATA  Educed Legend (Thickness)  Black sandy gravelly soil containing and dolomite (MADE GROUND).  Stiff (high strength) dark grey sand MEMBER).  Stiff (high strength) medium brown Occasional cobbles noted (PELAW)  Stiff (high strength) medium brown Occasional cobbles noted (PELAW)  Stiff (high strength) medium brown Occasional cobbles noted (PELAW)  Borehole terminated at a depth of company of the company |                  |                |                      |                     |                          |                        |                        |                                              | of 1          |               |
|                     |                       |                | Lu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                      |                     |                          | 1 (                    | 1 1                    | 4                                            |               |               |
| SAMPLI              |                       |                | ıter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Denth            |                |                      | SIKA                | IA                       |                        |                        |                                              | gs            | men           |
| Depth               | Type<br>No            | Test<br>Result | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Reduced<br>Level                 | Legend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (Thick-<br>ness) |                |                      |                     |                          |                        |                        |                                              | Geology       | K Instrument/ |
| 0.00-0.60           | B/J                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | }                | Black<br>and d | k sandy<br>lolomite  | gravelly<br>e (MADE | soil contai<br>E GROUNI  | ning occas<br>D).      | ional fragme           | ents of concrete                             |               |               |
| 0.60-1.00           | В                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                |                |                      | rength) d           | lark grey sa             | andy CLA               | Y (PELAW               | CLAY                                         |               |               |
| 1.00-1.40<br>1.00   | B<br>V                | 90kN/m         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                |                |                      |                     |                          |                        |                        |                                              |               |               |
| 1.40-2.00           | В                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.40             | Stiff<br>Occa  | (high st<br>sional c | rength) n           | nedium bro<br>oted (PELA | own very sa<br>AW CLAY | andy gravell<br>MEMBER | y CLAY.                                      |               |               |
| 2.00-3.00<br>2.00   | B<br>V                | 120kN/n        | n²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                      |                     |                          |                        |                        |                                              |               |               |
| 3.00-4.00<br>3.00   | B<br>V                | 120kN/n        | 2 <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (3.60)           |                |                      |                     |                          |                        |                        |                                              |               |               |
| 4.00-5.00<br>4.00   | B<br>V                | 120kN/n        | n <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                      |                     |                          |                        |                        |                                              |               |               |
| 5.00                | V                     | 120kN/n        | 1 <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.00             | Borel          | hole ter             | minated a           | at a depth o             | of c.5.00m.            |                        |                                              |               |               |
|                     |                       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -<br>-<br>-<br>- |                |                      |                     |                          |                        |                        |                                              |               |               |
| Borin               | ıg Prog               | gress an       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                | Cł                   | niselling           | g                        | Water                  | Added                  | GENE                                         |               |               |
| Date                | Time                  | Depth          | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Casin<br>Depth   D               | g<br>na. mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Water<br>Dpt     | Fr             | om                   | То                  | Hours                    | From                   | То                     | REMA WATER: Bore remained DRY exploratory pe | hole<br>durin |               |
|                     |                       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                      |                     |                          |                        |                        |                                              |               |               |
| All dimens<br>Scale | ions in r<br>e 1:37.5 | netres         | Clien                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | t ISOS<br>Limit                  | Devel<br>ed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | opments          |                | Method<br>Plant U    | d/<br>Jsed <b>W</b> | indowles                 | s Sampli               | ng                     | Logged By DO                                 | )             |               |



| Project           |            |                      |       |                        |                            |                                  |                                                       |                              |                           | BOREH                                         | OLE                   | No          |
|-------------------|------------|----------------------|-------|------------------------|----------------------------|----------------------------------|-------------------------------------------------------|------------------------------|---------------------------|-----------------------------------------------|-----------------------|-------------|
|                   | posed N    |                      | ment  | s at Temple            |                            | South Shield                     |                                                       |                              |                           | Bl                                            | <del>1</del> 5        |             |
| Job No            | 562        | Date                 | 07.1  | 11 12                  | Ground L                   | evel (m)                         | Co-Ordinates (                                        | )                            |                           |                                               |                       |             |
| Contractor        | 302        |                      | 07-1  | 11-13                  |                            |                                  |                                                       |                              |                           | Sheet                                         |                       |             |
|                   | Enviro     | nmental I            | ∠td.  |                        |                            |                                  |                                                       |                              |                           | 1 0                                           | f 1                   |             |
| SAMPL             | ES & T     | TESTS                |       |                        |                            |                                  | STRATA                                                |                              |                           |                                               |                       | nt/         |
| Depth             | Type<br>No |                      | Re L  | educed<br>Level Legend | Depth<br>(Thick-<br>ness)  |                                  |                                                       | CRIPTION                     |                           |                                               | Geology               | Instrument/ |
| 0.00-0.80         | B/J        |                      |       |                        | 1000)                      | Black sandy                      | gravelly soil. Gra                                    | vel is fine to               | coarse com                | nprising                                      | )                     |             |
| 0.80-1.20         | В          |                      |       |                        | (0.80)                     | -                                | dolostone and contained and gravelly class            |                              |                           |                                               |                       |             |
| -                 |            |                      |       |                        | (0.40)                     | fragments of GROUND).            | sandstone ash coa                                     | al brick conc                | rete and do               | lomite (MADE                                  |                       |             |
| 1.20-2.00         | В          |                      |       |                        | 1.20                       | Stiff (high str<br>to coarse con | rength) brown ver<br>nprising sandston<br>AY MEMBER). | y sandy grav<br>e and some c | velly CLAY<br>oal. Cobble | 7. Gravel is fine es noted                    |                       |             |
| 2.00-3.00         | B<br>V     | 120kN/m²             |       |                        |                            |                                  |                                                       |                              |                           |                                               |                       |             |
| 3.00-4.00         | B<br>V     | 120kN/m <sup>2</sup> |       |                        | (3.80)                     |                                  |                                                       |                              |                           |                                               |                       |             |
| 4.00-5.00<br>4.00 | B<br>V     | 120kN/m²             |       |                        | 5.00                       |                                  |                                                       |                              |                           |                                               |                       |             |
| 5.00              | V          | 120kN/m²             |       |                        | -<br>-<br>-<br>-<br>-<br>- | Borehole terr                    | ninated at 5.00m.                                     |                              |                           |                                               |                       |             |
| Borii             | ng Prog    | gress and            | Wate  | er Observati           | ons                        | Ch                               | iselling                                              | Water                        | Added                     | GENE                                          |                       |             |
| Date              | Time       | Depth                | Dept  | Casing<br>th   Dia. mm | Water<br>Dpt               | From                             | To Hours                                              | From                         | То                        | REMA WATER: Bore remained DRY exploratory per | RKS<br>hole<br>during |             |
| All dimens        |            | netres Cli           | ent ] | ISOS Devel             | opments                    | Method<br>Plant II               |                                                       | og Com-1:                    | 200                       | Logged By                                     | `                     |             |
| Scale             | e 1:37.5   |                      | ]     | Limited                |                            | riani U                          | sed Windowle                                          | ss sampli                    | ng                        | DC                                            | ,                     |             |



| Project       |            |                   |            |          |                                                                    |                      |               |        |         |                                             |                            | DRILLH                                                                                                                                               | IOLE                                                      | No                                   |
|---------------|------------|-------------------|------------|----------|--------------------------------------------------------------------|----------------------|---------------|--------|---------|---------------------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------|
| Pro<br>Job No | opose      | ed New            |            | nents at | Temple                                                             | Green, South         |               |        | .4:     | ()                                          |                            | RE                                                                                                                                                   | H1                                                        |                                      |
|               | 3-562      | 1                 | Date       | 09-11-1  | 13                                                                 | Ground Level (       | m)            | Co-Or  | dinates | 0                                           |                            |                                                                                                                                                      |                                                           |                                      |
| Contracto     |            | ,                 |            | 09-11-1  | 13                                                                 |                      |               |        |         |                                             |                            | Sheet                                                                                                                                                |                                                           |                                      |
| Ar            | c En       | vironm            | ental Lt   | d.       |                                                                    |                      |               |        |         |                                             |                            |                                                                                                                                                      | 1                                                         |                                      |
| RUN           | DET        | AILS              |            |          |                                                                    |                      |               | STRA   | ΓA      |                                             |                            | 0                                                                                                                                                    |                                                           | nt/                                  |
|               | CR<br>SCR) | (SPT)             | Red        | cd .     | Dept                                                               | h                    |               |        |         | IPTION                                      |                            |                                                                                                                                                      | Geology                                                   | Instrument/                          |
| Date R        | RQD        | Fractur<br>Spacin | e<br>g Lev | el Lege  | nd (Thick-<br>ness)                                                | Discontinuitie       | es            |        | Detail  |                                             | Main                       |                                                                                                                                                      | Geo                                                       | Inst                                 |
|               |            |                   |            |          | (1.20)                                                             |                      |               |        |         | Grass overly<br>(drillers des               | ying dark br<br>cription). | own soil                                                                                                                                             |                                                           |                                      |
|               |            |                   |            |          | 1.2                                                                | 0                    |               |        | _       | Dark brown<br>Occasional of<br>description) | cobbles not                | elly CLAY.<br>ed (drillers                                                                                                                           |                                                           |                                      |
|               |            |                   |            |          |                                                                    |                      |               |        |         |                                             |                            |                                                                                                                                                      |                                                           |                                      |
|               |            |                   |            |          | (12.30                                                             | 0)                   |               |        |         |                                             |                            |                                                                                                                                                      |                                                           |                                      |
|               |            |                   |            |          | 13.5                                                               | 0                    |               |        |         |                                             |                            |                                                                                                                                                      |                                                           |                                      |
|               |            |                   |            |          | (5.70)                                                             |                      |               |        |         | Reddish bro<br>Occasional onoted (drille    | cobbles and                |                                                                                                                                                      |                                                           |                                      |
|               |            |                   |            |          | 9 1<br>9 1<br>9 1<br>9 1<br>9 1<br>9 1<br>9 1<br>9 1<br>9 1<br>9 1 | 0                    |               |        |         | Ti la                                       |                            | AUDOTONE                                                                                                                                             |                                                           |                                      |
|               |            |                   |            |          | <u> </u>                                                           |                      |               |        |         | (drillers des                               | cription).                 | MUDSTONE                                                                                                                                             |                                                           |                                      |
|               |            |                   |            |          |                                                                    | ervations            |               |        |         | ry Flush                                    |                            | GENE                                                                                                                                                 |                                                           |                                      |
| Date          | Tim        | ne D              | epth       | Casing   | Core Dia                                                           | Water<br>Strike Star | nding         | From 0 | To 35   | Type<br>Water                               | Returns 100                | All description purely on the contemporation of brought to the the drilling rat maintained ducreation of the WATER: Bore remained DRY exploratory pe | as are be<br>drillers of cutting surfaces borehole during | pased<br>ings<br>e and<br>e<br>oles. |
| All dime      | nsions     |                   | es Clier   |          | S Devel                                                            | opments              | Meth<br>Plant |        | Open H  | Iole Rotary                                 | ,                          | Logged By                                                                                                                                            |                                                           |                                      |



| Project                    |                   |                   |                       |                              |       |       |           |                        |               | DRILLE                                                                                                                          | IOLE                                                | E No                      |
|----------------------------|-------------------|-------------------|-----------------------|------------------------------|-------|-------|-----------|------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------|
| Propose<br>Job No          |                   | partments<br>Date | s at Temple           | Green, South Ground Level (1 |       |       | dinates   | ()                     |               | RB                                                                                                                              | H1                                                  |                           |
| 13-562                     |                   |                   | 1-13                  | Giouna Level (i              | 11)   | C0-O1 | umates    | O                      |               |                                                                                                                                 |                                                     |                           |
| Contractor                 |                   | 07 1              | 1 13                  |                              |       |       |           |                        |               | Sheet                                                                                                                           |                                                     |                           |
| Arc En                     | vironmen          | tal Ltd.          |                       |                              |       |       |           |                        |               |                                                                                                                                 | 2                                                   |                           |
| RUN DET                    | ΓAILS             |                   |                       |                              |       | STRA  | <u>ΓΑ</u> |                        |               | 0                                                                                                                               | T -                                                 | nt/                       |
| Depth (SCR)                | (SPT)<br>Fracture | Red'cd            | Dept<br>egend (Thick- | h                            |       | Г     | ESCR      | RIPTION                |               |                                                                                                                                 | Geology                                             | Instrument/               |
| Date RQD                   | Spacing           | Level             | ness)                 | Discontinuitie               | es    |       | Detail    |                        | Main          |                                                                                                                                 | Geo                                                 | Inst                      |
|                            |                   |                   | 35.0                  |                              |       |       |           | Borehole ter c.35.00m. | cription).(ca |                                                                                                                                 |                                                     |                           |
| Dril                       | ling Prog         | ress and          | Water Obse            |                              |       |       | Rota      | ary Flush              |               | GENE                                                                                                                            |                                                     |                           |
| Date Tin                   | ne Dept           | h Casin           | g Core Dia            | Water<br>Strike   Stan       | ding  | From  | То        | Туре                   | Returns       | All description purely on the content of the drilling rate maintained ducreation of the WATER: Bore remained DRY exploratory pe | s are ballilers of cutting surfaces borehole during | ings<br>e an<br>e<br>oles |
| All dimensions<br>Scale 1: |                   | Client I          | ISOS Devel<br>Limited | opments                      | Metho |       | Open I    | Hole Rotary            | 7             | Logged By                                                                                                                       |                                                     |                           |



| Project      |                     |                     |           |              |                |                      |               |        |          |                                          |                             | DRILLI                                                                                                                             | HOLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E No                                 |
|--------------|---------------------|---------------------|-----------|--------------|----------------|----------------------|---------------|--------|----------|------------------------------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| Pr<br>Job No | opose               | ed New              |           | nts at       | Temple         | Green, South         |               |        |          | <u> </u>                                 |                             | RE                                                                                                                                 | <b>3H2</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |
|              | 3-562               | ,                   | Date      | -11-13       | ,              | Ground Level (       | (m)           | Co-Oi  | rdinates | ()                                       |                             |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
| Contracto    |                     | •                   | 0)        | -11-1,       | ,              |                      |               |        |          |                                          |                             | Sheet                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
| A            | rc En               | vironme             | ntal Ltd. |              |                |                      |               |        |          |                                          |                             |                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |
| RUN          | DET                 | TAILS               |           |              |                |                      |               | STRA   | ГА       |                                          |                             | 0                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nt/                                  |
|              | TCR<br>SCR)         | (SPT)               | Red'cd    | T            | Deptl          | h                    |               | Г      | ESCR     | IPTION                                   |                             |                                                                                                                                    | Geology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Instrument/                          |
| Date I       | RQD                 | Fracture<br>Spacing | Level     | Legen        | ness)          | Discontinuiti        | es            |        | Detail   |                                          | Main                        |                                                                                                                                    | Gec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Inst                                 |
|              |                     |                     |           |              | (1.00)         | 0                    |               |        |          | Grass overly<br>(drillers des            | ving dark bro<br>cription). | own soil                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
|              |                     |                     |           |              | 1.00<br>12.00  |                      |               |        |          | Dark brown<br>Occasional description)    | sandy grave                 | elly CLAY.<br>d (drillers                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
|              |                     |                     |           |              | <del></del>    | 0                    |               |        | -        | Reddish bro<br>Occasional onoted (drille | cobbles and                 |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
| D.           |                     |                     |           |              |                | ervations            |               |        |          | nry Flush                                |                             | GENE                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
| Date         | Tim                 | ne De               | pth Ca    | sing         | Core Dia       | Water<br>Strike Star | nding         | From 0 | 35       | Type<br>Water                            | Returns 100                 | All description purely on the contemporation of the drilling rat maintained ducreation of the WATER: Box WATER: Box Exploratory pe | ns are be derillers of cutting surface es borehole dering the dering during dur | pased<br>ings<br>e and<br>e<br>oles. |
|              | ensions<br>cale 1:1 | in metres           | Client    | ISOS<br>Limi | S Devel<br>ted | opments              | Meth<br>Plant |        | Open I   | Iole Rotary                              | ,                           | Logged By                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |



| Project                            |                   |                    |                |                              |               |       |          |                        |               | DRILLE                                                                                                                                 | IOLE                                                     | E No                                 |
|------------------------------------|-------------------|--------------------|----------------|------------------------------|---------------|-------|----------|------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------|
| Proposed No<br>Job No              | ew Aparti<br>Date | ments at           | Temple         | Green, South Ground Level (1 |               |       | rdinates | ()                     |               | RB                                                                                                                                     | <b>H2</b>                                                |                                      |
| 13-562                             | Date              | 09-11-13           | 3              | Oloulia Level (1             | 11)           | (0-0) | iumates  | U                      |               |                                                                                                                                        |                                                          |                                      |
| Contractor                         |                   | 07 11 1.           | ,              |                              |               |       |          |                        |               | Sheet                                                                                                                                  |                                                          |                                      |
| Arc Enviror                        | mental L          | ∠td.               |                |                              |               |       |          |                        |               |                                                                                                                                        | 2                                                        |                                      |
| RUN DETAIL                         | S                 |                    |                |                              |               | STRA  | ΓA       |                        |               | 0                                                                                                                                      | _                                                        | nt/                                  |
| Depth (SCR) Frac                   | T) Rec            | d'cd<br>evel Legen | Depth          | n                            |               | Γ     | ESCR     | RIPTION                |               |                                                                                                                                        | Geology                                                  | Instrument/                          |
| Joto (SCK) Fra                     | cing Le           | vel Legen          | ness)          | Discontinuitie               | s             |       | Detail   |                        | Main          |                                                                                                                                        | Gec                                                      | Inst                                 |
|                                    |                   |                    | 35.00          |                              |               |       |          | Borehole ter c.35.00m. | cription).(co |                                                                                                                                        |                                                          |                                      |
| Drilling                           | Progress          |                    |                |                              |               |       | Rota     | ary Flush              |               | GENE                                                                                                                                   | RAL                                                      |                                      |
| Date Time                          | Depth             |                    | Core Dia<br>mm |                              | ding          | From  | То       | Type                   | Returns       | All description purely on the contemperation of the drilling rate maintained ducreation of the WATER: Bore remained DRY exploratory pe | s are brillers of cutti surfaces ring the borehole durin | pased<br>ings<br>e and<br>e<br>oles. |
| All dimensions in m<br>Scale 1:125 | etres Clie        | ent ISOS<br>Limi   | S Develo       | opments                      | Meth<br>Plant |       | Open I   | Hole Rotary            | ,             | Logged By                                                                                                                              |                                                          |                                      |

# **Arc Environmental Ground Gas Monitoring Certificate**

Equip: GFM430 Series

Site: Proposed New Appartments at Temple Green, South Shields

Ref: 13-562

Date: 08/11/2013

Visit by: Geoff Heron

**Time:** 12:30pm

Signature:

| Borehole | Gas<br>Flow | Atmospheric<br>Pressure | Methan  | e (% v/v) | Methane                                 | (% LEL) |                                         | Dioxide<br>v/v) | Oxygei  | า (% v/v) | Oth                                     | er Gases (P      | PM) | Depth to Water<br>(m bgl) |
|----------|-------------|-------------------------|---------|-----------|-----------------------------------------|---------|-----------------------------------------|-----------------|---------|-----------|-----------------------------------------|------------------|-----|---------------------------|
|          | (l/hr)      | (mb)                    | Initial | Steady    | Initial                                 | Steady  | Initial                                 | Steady          | Initial | Steady    | PID                                     | H <sub>2</sub> S | CO  | (ill bgi)                 |
| BH1      | <0.1        | 993                     | 0.0     | 0.0       | 0.0                                     | 0.0     | 0.1                                     | 0.1             | 19.5    | 19.5      | *************************************** |                  |     | Dry                       |
| BH2      | <0.1        | 994                     | 0.0     | 0.0       | 0.0                                     | 0.0     | 0.1                                     | 0.1             | 19.4    | 19.4      |                                         |                  |     | Dry                       |
| BH4      | <0.1        | 995                     | 0.0     | 0.0       | 0.0                                     | 0.0     | 0.1                                     | 0.1             | 19.4    | 19.4      |                                         |                  |     | Dry                       |
|          |             |                         |         |           |                                         |         |                                         |                 |         |           |                                         |                  |     |                           |
|          |             |                         |         |           |                                         |         |                                         |                 |         |           |                                         |                  |     |                           |
|          |             |                         |         |           |                                         |         |                                         |                 |         |           |                                         |                  |     |                           |
|          |             |                         |         |           |                                         |         | *************************************** |                 |         |           |                                         |                  |     |                           |
|          |             |                         |         |           | *************************************** |         |                                         |                 |         |           |                                         |                  |     |                           |
|          |             |                         |         |           |                                         |         |                                         |                 |         |           |                                         |                  |     |                           |
|          |             |                         |         |           |                                         |         | •                                       |                 |         |           |                                         |                  |     |                           |

Notes:

Detection limits - Methane = 0.0%, Carbon Dioxide = 0.0%, LEL = 0.0%, Oxygen = 0.0%, Flow = 0.1l/hr

Monitoring order is from Left to Right across table.

Monitoring should be for **Not Less** than 3 minutes. However, if high concentrations of gasses initially recorded, monitoring should be for up to 10 minutes.

N/A = Not applicable



## **Arc Environmental Ground Gas Monitoring Certificate**

Equip: GFM430 Series

Site: Proposed New Appartments at Temple Green, South Shields

Ref: 13-562

Date: 19/11/2013

Visit by: Geoff Heron

Time: 13:25pm

Signature:

| Borehole | Gas<br>Flow<br>(I/hr) | Atmospheric<br>Pressure<br>(mb) | Methane (% v/v)  |                                         | Methane (% LEL) |        | Carbon Dioxide<br>(% v/v) |        | Oxygen (% v/v) |        | Other Gases (PPM) |                  |      | Depth to Water                          |
|----------|-----------------------|---------------------------------|------------------|-----------------------------------------|-----------------|--------|---------------------------|--------|----------------|--------|-------------------|------------------|------|-----------------------------------------|
|          |                       |                                 | Initial          | Steady                                  | Initial         | Steady | Initial                   | Steady | Initial        | Steady | PID               | H <sub>2</sub> S | CO   | (m bgl)                                 |
| BH1      | <0.1                  | 1008                            | 0.0              | 0.0                                     | 0.0             | 0.0    | 0.1                       | 0.1    | 19.3           | 19.3   |                   |                  |      | Dry                                     |
| BH2      | <0.1                  | 1008                            | 0.0              | 0.0                                     | 0.0             | 0.0    | 0.1                       | 0.1    | 19.4           | 19.4   |                   |                  |      | Dry                                     |
| BH4      | <0.1                  | 1008                            | 0.0              | 0.0                                     | 0.0             | 0.0    | 0.1                       | 0.1    | 19.4           | 19.4   |                   |                  |      | Dry                                     |
|          |                       |                                 |                  |                                         |                 |        |                           |        |                |        |                   |                  |      |                                         |
|          |                       |                                 |                  |                                         |                 |        |                           |        |                |        |                   |                  |      |                                         |
|          |                       |                                 |                  |                                         |                 |        |                           |        |                |        |                   |                  |      | *************************************** |
|          |                       |                                 |                  | *************************************** |                 |        |                           |        |                |        |                   |                  |      | <u></u>                                 |
|          |                       |                                 |                  |                                         |                 |        |                           |        |                |        |                   |                  |      |                                         |
|          |                       |                                 |                  |                                         |                 |        |                           |        |                |        |                   | :                | **** |                                         |
|          |                       |                                 | vana range de um |                                         |                 |        |                           |        |                |        |                   |                  |      |                                         |

Notes

Detection limits - Methane = 0.0%, Carbon Dioxide = 0.0%, LEL = 0.0%, Oxygen = 0.0%, Flow = 0.1l/hr

Monitoring order is from Left to Right across table.

Monitoring should be for Not Less than 3 minutes. However, if high concentrations of gasses initially recorded, monitoring should be for up to 10 minutes.

N/A = Not applicable



# **Arc Environmental Ground Gas Monitoring Certificate**

Equip: GFM430 Series

Site: Proposed New Appartments at Temple Green, South Shields

Ref: 13-562

Date: 02/12/2013

Visit by: Geoff Heron

Time: 15:05pm

Signature: @



| Borehole | Gas<br>Flow<br>(I/hr) | Atmospheric<br>Pressure<br>(mb)        | Methane (% v/v) |        | Methane (% LEL) |        | Carbon Dioxide<br>(% v/v) |        | Oxygen (% v/v) |        | Other Gases (PPM) |                                         |    | Depth to Water |
|----------|-----------------------|----------------------------------------|-----------------|--------|-----------------|--------|---------------------------|--------|----------------|--------|-------------------|-----------------------------------------|----|----------------|
|          |                       |                                        | Initial         | Steady | Initial         | Steady | Initial                   | Steady | Initial        | Steady | PID               | H <sub>2</sub> S                        | CO | (m bgl)        |
| BH1      | <0.1                  | 1022                                   | 0.0             | 0.0    | 0.0             | 0.0    | 0.1                       | 0.1    | 19.5           | 19.5   |                   |                                         |    | Dry            |
| BH2      | <0.1                  | 1022                                   | 0.0             | 0.0    | 0.0             | 0.0    | 0.1                       | 0.1    | 19.3           | 19.3   |                   |                                         |    | Dry            |
| BH4      | <0.1                  | 1022                                   | 0.0             | 0.0    | 0.0             | 0.0    | 0.1                       | 0.1    | 19.4           | 19.4   |                   |                                         |    | Dry            |
|          |                       |                                        |                 |        |                 |        |                           |        |                |        |                   |                                         |    |                |
|          |                       |                                        |                 |        |                 |        |                           |        |                |        |                   |                                         |    |                |
|          |                       |                                        |                 |        |                 |        |                           |        |                |        |                   |                                         |    |                |
|          |                       |                                        |                 |        |                 |        |                           |        |                |        |                   |                                         |    |                |
|          |                       |                                        |                 |        |                 |        |                           |        |                |        |                   |                                         |    |                |
|          |                       |                                        |                 |        |                 |        |                           |        |                |        |                   |                                         |    |                |
|          |                       |                                        |                 |        |                 |        | •                         |        |                |        |                   |                                         |    |                |
| lotos:   |                       | ······································ |                 |        | **              | ·      |                           |        |                |        |                   | *************************************** |    | •              |

Notes:

Detection limits - Methane = 0.0%, Carbon Dioxide = 0.0%, LEL = 0.0%, Oxygen = 0.0%, Flow = 0.1l/hr

Monitoring order is from Left to Right across table.

Monitoring should be for Not Less than 3 minutes. However, if high concentrations of gasses initially recorded, monitoring should be for up to 10 minutes.

N/A = Not applicable



## Arc Environmental Ground Gas Monitoring Certificate

Equip: GFM430 Series

Site: Proposed New Appartments at Temple Green, South Shields

**Ref:** 13-562

Date: 17/12/2013

Visit by: Geoff Heron

Time: 14:40pm

Signature: rc

| Borehole | Gas<br>Flow | Atmospheric<br>Pressure | Methan  | e (% v/v) | Methane                                 | (% LEL) |         | Dioxide<br>v/v) | Oxyge   | ר (% v/v) | Oth | Other Gases (PPM) |    | es (PPM) Depth to Water (m bgl) |  |
|----------|-------------|-------------------------|---------|-----------|-----------------------------------------|---------|---------|-----------------|---------|-----------|-----|-------------------|----|---------------------------------|--|
|          | (l/hr)      | (mb)                    | Initial | Steady    | Initial                                 | Steady  | Initial | Steady          | Initial | Steady    | PID | H₂S               | CO | (III bgI)                       |  |
| BH1      | <0.1        | 1002                    | 0.0     | 0.0       | 0.0                                     | 0.0     | 0.1     | 0.1             | 19.2    | 19.2      |     |                   |    | Dry                             |  |
| BH2      | <0.1        | 1002                    | 0.0     | 0.0       | 0.0                                     | 0.0     | 0.1     | 0.1             | 19.3    | 19.3      |     |                   |    | Dry                             |  |
| BH4      | <0.1        | 1002                    | 0.0     | 0.0       | 0.0                                     | 0.0     | 0.1     | 0.1             | 19.2    | 19.2      |     |                   |    | Dry                             |  |
|          |             |                         |         |           |                                         |         |         |                 |         |           |     |                   |    |                                 |  |
|          |             |                         |         |           |                                         |         |         |                 |         | · ·       |     |                   |    |                                 |  |
|          |             |                         |         |           |                                         |         |         |                 |         |           |     |                   |    |                                 |  |
|          |             |                         |         |           |                                         |         |         |                 |         |           |     |                   |    |                                 |  |
|          |             |                         |         |           |                                         |         |         |                 |         |           |     |                   |    |                                 |  |
|          |             |                         |         |           | *************************************** |         |         |                 |         |           |     |                   |    |                                 |  |
|          | 444444      |                         |         |           |                                         |         |         |                 |         |           |     |                   |    |                                 |  |

Notes:

Detection limits - Methane = 0.0%, Carbon Dioxide = 0.0%, LEL = 0.0%, Oxygen = 0.0%, Flow = 0.1l/hr

Monitoring order is from Left to Right across table.

Monitoring should be for **Not Less** than 3 minutes. However, if high concentrations of gasses initially recorded, monitoring should be for up to 10 minutes.

N/A = Not applicable



### **Arc Environmental Ground Gas Monitoring Certificate**

Equip: GFM430 Series

Site: Proposed New Appartments at Temple Green, South Shields

**Ref**: 13-562 **Date**: 07/01/2014

Visit by: Geoff Heron Time: 12:10pm

Signature: Jucus



| Borehole | Gas<br>Flow | Atmospheric<br>Pressure | Methan  | e (% v/v) | Methane | (% LEL) |                                         | Dioxide<br>v/v) | Oxyger  | ו (% v/v) | Oth | ther Gases (PPM) |    | Depth to Water<br>- (m bgl) |
|----------|-------------|-------------------------|---------|-----------|---------|---------|-----------------------------------------|-----------------|---------|-----------|-----|------------------|----|-----------------------------|
|          | (l/hr)      | (mb)                    | Initial | Steady    | Initial | Steady  | Initial                                 | Steady          | Initial | Steady    | PID | H <sub>2</sub> S | CO | - (m bgi)                   |
| BH1      | <0.1        | 985                     | 0.0     | 0.0       | 0.0     | 0.0     | 0.1                                     | 0.1             | 19.6    | 19.6      |     |                  |    | Dry                         |
| BH2      | <0.1        | 984                     | 0.0     | 0.0       | 0.0     | 0.0     | 0.1                                     | 0.1             | 19.5    | 19.5      |     |                  |    | Dry                         |
| BH4      | <0.1        | 983                     | 0.0     | 0.0       | 0.0     | 0.0     | 0.1                                     | 0.1             | 19.5    | 19.5      |     |                  |    | Dry                         |
|          |             |                         |         |           |         |         |                                         |                 |         |           |     |                  |    |                             |
|          |             |                         |         |           |         |         |                                         |                 |         |           |     |                  |    |                             |
|          |             |                         |         |           |         |         |                                         |                 |         |           |     |                  |    |                             |
|          |             |                         |         |           |         |         |                                         |                 |         |           |     |                  |    |                             |
|          |             |                         |         |           |         |         |                                         |                 |         |           |     |                  |    |                             |
|          |             |                         |         |           | ••••    |         | *************************************** |                 |         |           |     |                  |    |                             |
|          |             |                         |         |           |         |         |                                         |                 |         |           |     |                  |    | ,,,,,,,,,,,,                |

Notes:

Detection limits - Methane = 0.0%, Carbon Dioxide = 0.0%, LEL = 0.0%, Oxygen = 0.0%, Flow = 0.1l/hr

Monitoring order is from Left to Right across table.

Monitoring should be for Not Less than 3 minutes. However, if high concentrations of gasses initially recorded, monitoring should be for up to 10 minutes.

N/A = Not applicable

### **Arc Environmental Ground Gas Monitoring Certificate**

Equip: GFM430 Series

Site: Proposed New Appartments at Temple Green, South Shields

Ref: 13-562

Date: 27/01/2014

Visit by: Geoff Heron

Time: 15:30pm

Signature:

| Borehole Flow |        | Pressure         | Methan  | e (% v/v) | Methane (% LEL) |        |         | Dioxide<br>v/v) | Oxyger  | ı (% v/v) | Oth         | ner Gases (P     | PM) | Depth to Water |
|---------------|--------|------------------|---------|-----------|-----------------|--------|---------|-----------------|---------|-----------|-------------|------------------|-----|----------------|
| Doteriole     | (l/hr) | Pressure<br>(mb) | Initial | Steady    | Initial         | Steady | Initial | Steady          | Initial | Steady    | PID         | H <sub>2</sub> S | CO  | (m bgl)        |
| BH1           | <0.1   | 989              | 0.0     | 0.0       | 0.0             | 0.0    | 0.1     | 0.1             | 19.6    | 19.6      |             |                  |     | Dry            |
| BH2           | <0.1   | 989              | 0.0     | 0.0       | 0.0             | 0.0    | 0.1     | 0.1             | 19.7    | 19.7      | w-1-1-1-1-1 |                  |     | Dry            |
| BH4           | <0.1   | 989              | 0.0     | 0.0       | 0.0             | 0.0    | 0.1     | 0.1             | 19.6    | 19.6      |             |                  |     | Dry            |
|               |        |                  |         |           |                 |        |         |                 |         |           |             |                  |     |                |
|               |        |                  |         |           |                 |        |         |                 |         |           |             |                  |     |                |
|               |        |                  |         |           |                 |        |         |                 |         |           |             |                  |     |                |
|               |        |                  |         |           |                 |        |         |                 |         |           |             |                  |     |                |
|               |        |                  |         |           |                 |        |         |                 |         |           |             |                  |     |                |
|               |        |                  |         |           |                 |        |         |                 |         |           |             |                  |     |                |
|               |        |                  |         |           |                 |        |         |                 |         |           |             |                  |     |                |

Notes:

Detection limits - Methane = 0.0%, Carbon Dioxide = 0.0%, LEL = 0.0%, Oxygen = 0.0%, Flow = 0.1l/hr

Monitoring order is from Left to Right across table.

Monitoring should be for Not Less than 3 minutes. However, if high concentrations of gasses initially recorded, monitoring should be for up to 10 minutes.

N/A = Not applicable





# **Laboratory Results**

T: 0191 378 6380 F: 0191 378 0494

E: admin@arc-environmental.com W: www.arc-environmental.com Registered in England No. 05539784



## LABORATORY REPORT



4043

Contract Number: PSL13/4399

Client's Reference: Report Date: 19 November 2013

Client Name: Arc Environmental

Solum House

Unit 1 Elliott Court

St Johns Road, Meadowfield

Durham DH7 8PN

For the attention of: Terry McMenam

Contract Title: Temple Green, South Shields

Date Received: 8/11/2013
Date Commenced: 8/11/2013
Date Completed: 19/11/2013

Notes: Observations and Interpretations are outside the UKAS Accreditation

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced in full, without the prior written approval of the laboratory.

Checked and Approved Signatories:

R Gunson A Watkins M Beastall (Director) (Director) (Laboratory Manager)

5 – 7 Hexthorpe Road, Hexthorpe,

Doncaster DN4 0AR

tel: +44 (0)844 815 6641 fax: +44 (0)844 815 6642

e-mail: rgunson@prosoils.co.uk awatkins@prosoils.co.uk Page 1 of

## **SUMMARY OF LABORATORY SOIL DESCRIPTIONS**

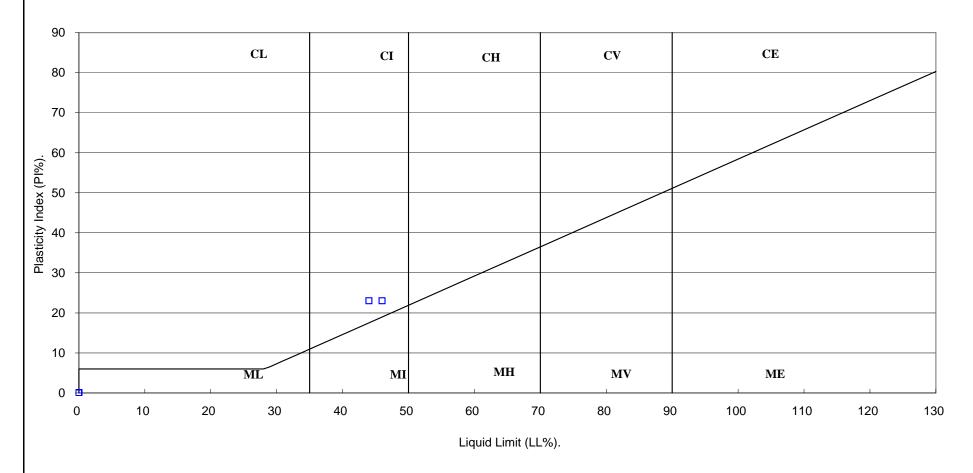
| Hole<br>Number | Sample<br>Number | Sample<br>Type | Depth<br>m | Description of Sample               |
|----------------|------------------|----------------|------------|-------------------------------------|
| BH1            |                  | В              | 1.00       | Brown slightly gravelly sandy CLAY. |
| ВН2            |                  | В              |            | Brown slightly gravelly sandy CLAY. |
|                |                  |                |            |                                     |
|                |                  |                |            |                                     |
|                |                  |                |            |                                     |
|                |                  |                |            |                                     |
|                |                  |                |            |                                     |
|                |                  |                |            |                                     |
|                |                  |                |            |                                     |
|                |                  |                |            |                                     |
|                |                  |                |            |                                     |
|                |                  |                |            |                                     |
|                |                  |                |            |                                     |
|                |                  |                |            |                                     |
|                |                  |                |            |                                     |
|                |                  |                |            |                                     |
|                |                  |                |            |                                     |
|                |                  |                |            |                                     |
|                |                  |                |            |                                     |

| P            | <b>S</b> 1 |            |
|--------------|------------|------------|
| Professional | Soils      | Laboratory |

| Compiled by | Date     | Checked by   | Date        | Approved by | Date     |
|-------------|----------|--------------|-------------|-------------|----------|
| 6000        | 19/11/13 | M. Sen       | 19/11/13    | M. Sus      | 19/11/13 |
| TEMDI       | E CDEEN  | Contract No: | PSL13/4399  |             |          |
| IEMPL       | E GREEN, |              | Client Ref: | 13-562      |          |

## **SUMMARY OF SOIL CLASSIFICATION TESTS**

(B.S. 1377 : PART 2 : 1990)


| Hole<br>Number | Sample<br>Number |   | Depth<br>m | Moisture<br>Content<br>% | Bulk<br>Density<br>Mg/m <sup>3</sup> | Dry<br>Density<br>Mg/m <sup>3</sup> | Particle<br>Density<br>Mg/m <sup>3</sup> | Liquid<br>Limit<br>% | Plastic<br>Limit<br>% | Plasticity<br>Index<br>% | % Passing .425mm | Remarks                     |
|----------------|------------------|---|------------|--------------------------|--------------------------------------|-------------------------------------|------------------------------------------|----------------------|-----------------------|--------------------------|------------------|-----------------------------|
|                |                  |   |            | Clause 3.2               | Clause 7.2                           | Clause 7.2                          | Clause 8.                                | Clause 4.3/4.4       | Clause 5.             | Clause 5.4               |                  |                             |
| BH1            |                  | В | 1.00       | 22                       |                                      |                                     |                                          | 46                   | 23                    | 23                       | 93               | Intermediate plasticity CI. |
| BH2            |                  | В | 1.50       | 21                       |                                      |                                     |                                          | 44                   | 21                    | 23                       | 92               | Intermediate plasticity CI. |
|                |                  |   |            |                          |                                      |                                     |                                          |                      |                       |                          |                  |                             |
|                |                  |   |            |                          |                                      |                                     |                                          |                      |                       |                          |                  |                             |
|                |                  |   |            |                          |                                      |                                     |                                          |                      |                       |                          |                  |                             |
|                |                  |   |            |                          |                                      |                                     |                                          |                      |                       |                          |                  |                             |
|                |                  |   |            |                          |                                      |                                     |                                          |                      |                       |                          |                  |                             |
|                |                  |   |            |                          |                                      |                                     |                                          |                      |                       |                          |                  |                             |
|                |                  |   |            |                          |                                      |                                     |                                          |                      |                       |                          |                  |                             |
|                |                  |   |            |                          |                                      |                                     |                                          |                      |                       |                          |                  |                             |
|                |                  |   |            |                          |                                      |                                     |                                          |                      |                       |                          |                  |                             |
|                |                  |   |            |                          |                                      |                                     |                                          |                      |                       |                          |                  |                             |
|                |                  |   |            |                          |                                      |                                     |                                          |                      |                       |                          |                  |                             |
|                |                  |   |            |                          |                                      |                                     |                                          |                      |                       |                          |                  |                             |
|                |                  |   |            |                          |                                      |                                     |                                          |                      |                       |                          |                  |                             |
|                |                  |   |            |                          |                                      |                                     |                                          |                      |                       |                          |                  |                             |
|                |                  |   |            |                          |                                      |                                     |                                          |                      |                       |                          |                  |                             |
|                |                  |   |            |                          |                                      |                                     |                                          |                      |                       |                          |                  |                             |
|                |                  |   |            |                          |                                      |                                     | _                                        |                      |                       |                          |                  |                             |

**SYMBOLS:** NP: Non Plastic

|                               | Compiled by | Date     | Checked by  | Date         | Approved by | Date     |
|-------------------------------|-------------|----------|-------------|--------------|-------------|----------|
| <b>FSU</b>                    | 6000        | 19/11/13 | M. Sen      | 19/11/13     | M. Sus      | 19/11/13 |
| Professional Soils Laboratory | TEMDI       | E GREEN, |             | Contract No: | PSL13/4399  |          |
|                               | I EMIT L    | E GREEN, | Client Ref: | 13-562       |             |          |

## PLASTICITY CHART FOR CASAGRANDE CLASSIFICATION.

(B.S.5930: 1999)



**PSL**Professional Soils Laboratory

| Compiled by | Date     | Checked by     | Date     | Approved by  | Date       |
|-------------|----------|----------------|----------|--------------|------------|
| 6000        | 19/11/13 | M. Sen         | 19/11/13 | M. Sen       | 19/11/13   |
|             |          |                |          |              |            |
| TEMBI I     | CDEEN    | SOUTH SHIELDS. |          | Contract No: | PSL13/4399 |







#### **ANALYTICAL TEST REPORT**

**Contract no:** 49559(1)

Contract name: Temple Green, South Shields

Client reference: 13-562

Clients name: ARC Environmental

Clients address: Solum House

Unit 1 Elliott Court

St Johns Road, Meadowfield

DH7 8PN

Samples received: 13 November 2013

Analysis started: 14 November 2013

Analysis completed 27 November 2013

**Report issued:** 28 November 2013

This is a supplementary report to report number 49559 issued 21 November 2013.

**Notes:** Opinions and interpretations expressed herein are outside the UKAS accreditation scope.

Unless otherwise stated, Chemtech Environmental Ltd was not responsible for sampling.

 $\label{eq:methods} \mbox{Methods, procedures and performance data are available on request.}$ 

Results reported herein relate only to the material supplied to the laboratory. This report shall not be reproduced except in full, withour prior written approval. Samples will be disposed of 6 weeks from initial receipt unless otherwise instructed.

**Key:** U UKAS accredited test

M MCERTS & UKAS accredited test

\$ Test carried out by an approved subcontractor

I/S Insufficient sample to carry out test N/S Sample not suitable for testing

NAD No Asbestos Detected

Approved by:

Karan Campbell

( Campbell

John Campbell Director

Director

## **SAMPLE INFORMATION**

#### MCERTS (Soils):

Soil descriptions are only intended to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions. MCERTS accreditation applies for sand, clay and loam/topsoil, or combinations of these whether these are derived from naturally occurring soils or from made ground, as long as these materials constitute the major part of the sample. Other materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

All results are reported on a dry basis. Samples dried at no more than 30°C in a drying cabinet. Analytical results are exclusive of stones.

| Lab ref | Sample id | Depth (m) | Soil description  | Description of material | % Retained   | Moisture |
|---------|-----------|-----------|-------------------|-------------------------|--------------|----------|
|         |           |           | passing 2mm sieve | retained on 2mm sieve   | on 2mm sieve | (%)      |
| 49559-1 | BH 1      | 0.50      | Loam              | Stones & Gravel         | 54.6         | 17.5     |
| 49559-2 | BH 1      | 2.00      | Clay              | Gravel                  | 16.2         | 12.5     |
| 49559-3 | BH 2      | 0.50      | Loam              | Stones & Gravel         | 35.4         | 17.5     |
| 49559-4 | BH 3      | 0.00-0.40 | Sandy Clay        | Stones & Gravel         | 43.7         | 16.8     |
| 49559-5 | BH 3      | 4.00-5.00 | Sandy Clay        | Gravel                  | 16.2         | 9.4      |
| 49559-6 | BH 4      | 0.00-0.60 | Sandy Clay        | Stones & Gravel         | 27.3         | 16.2     |
| 49559-7 | BH 5      | 0.00-0.80 | Sandy Loamy Clay  | Slag & Gravel           | 43.4         | 14.9     |

## **SOILS**

| Lab number                   |                    |                      | 49559-1    | 49559-2    | 49559-3    | 49559-4    | 49559-5    | 49559-6    |
|------------------------------|--------------------|----------------------|------------|------------|------------|------------|------------|------------|
| Sample id                    |                    |                      | BH 1       | BH 1       | BH 2       | BH 3       | BH 3       | BH 4       |
| Depth (m)                    |                    |                      | 0.50       | 2.00       | 0.50       | 0.00-0.40  | 4.00-5.00  | 0.00-0.60  |
| Date sampled                 |                    |                      | 22/10/2013 | 22/10/2013 | 22/10/2013 | 22/10/2013 | 22/10/2013 | 22/10/2013 |
| Test                         | Method             | Units                |            |            |            |            |            |            |
| Arsenic (total)              | CE054 <sup>M</sup> | mg/kg As             | 13         | -          | 9.6        | 13         | -          | 15         |
| Cadmium (total)              | CE054 <sup>M</sup> | mg/kg Cd             | 0.4        | -          | 0.3        | 0.4        | -          | 0.7        |
| Chromium (total)             | CE054 <sup>M</sup> | mg/kg Cr             | 25         | i          | 26         | 36         | -          | 30         |
| Chromium (III)               | -                  | mg/kg CrIII          | 25         | i          | 26         | 36         | -          | 30         |
| Chromium (VI)                | CE050              | mg/kg CrVI           | <1         | i          | <1         | <1         | -          | <1         |
| Copper (total)               | CE054 <sup>M</sup> | mg/kg Cu             | 69         | i          | 21         | 106        | -          | 114        |
| Lead (total)                 | CE054 <sup>M</sup> | mg/kg Pb             | 134        | -          | 62         | 164        | -          | 186        |
| Mercury (total)              | CE054              | mg/kg Hg             | 0.6        | -          | <0.5       | <0.5       | -          | <0.5       |
| Nickel (total)               | CE054 <sup>M</sup> | mg/kg Ni             | 25         | -          | 23         | 32         | -          | 30         |
| Selenium (total)             | CE054 <sup>M</sup> | mg/kg Se             | 1.3        | -          | 1.3        | 1.2        | -          | 1.3        |
| Zinc (total)                 | CE054 <sup>M</sup> | mg/kg Zn             | 187        | -          | 103        | 493        | -          | 348        |
| рН                           | CE004 <sup>M</sup> | units                | 8.0        | 8.2        | 7.7        | 7.6        | 8.5        | 7.8        |
| Sulphate (2:1 water soluble) | CE049 <sup>U</sup> | mg/l SO <sub>4</sub> | 78         | 41         | 23         | 1359       | 133        | 1064       |
| Cyanide (free)               | CE077              | mg/kg CN             | <2         | i          | <2         | <2         | -          | <2         |
| Total Organic Carbon (TOC)   | CE072 <sup>M</sup> | % w/w C              | 4.85       | ı          | 2.81       | 3.64       | -          | 4.68       |
| РАН                          |                    |                      |            |            |            |            |            |            |
| Acenaphthene                 | CE087              | mg/kg                | <0.1       | i          | i          | i          | -          | 0.5        |
| Acenaphthylene               | CE087              | mg/kg                | 0.2        | -          | -          | -          | -          | <0.1       |
| Anthracene                   | CE087              | mg/kg                | 0.7        | -          | -          | -          | -          | 0.9        |
| Benzo(a)anthracene           | CE087              | mg/kg                | 2.3        | -          | -          | -          | -          | 1.9        |
| Benzo(a)pyrene               | CE087              | mg/kg                | 1.8        | -          | -          | -          | -          | 1.7        |
| Benzo(b)fluoranthene         | CE087              | mg/kg                | 2.7        | -          | -          | -          | -          | 2.5        |
| Benzo(ghi)perylene           | CE087              | mg/kg                | 1.3        | 1          | 1          | 1          | -          | 1.2        |
| Benzo(k)fluoranthene         | CE087              | mg/kg                | 1.0        | i          | i          | i          | -          | 0.9        |
| Chrysene                     | CE087              | mg/kg                | 2.3        | i          | i          | i          | -          | 2.0        |
| Dibenz(ah)anthracene         | CE087              | mg/kg                | 0.4        | -          | -          | -          | -          | 0.4        |
| Fluoranthene                 | CE087              | mg/kg                | 5.4        | -          | -          | -          | -          | 4.5        |
| Fluorene                     | CE087              | mg/kg                | 0.2        | 1          | 1          | 1          | -          | 0.5        |
| Indeno(123cd)pyrene          | CE087              | mg/kg                | 1.3        | i          | i          | i          | -          | 1.2        |
| Naphthalene                  | CE087              | mg/kg                | 0.2        | i          | i          | i          | -          | 0.2        |
| Phenanthrene                 | CE087              | mg/kg                | 3.0        | -          | -          | -          | -          | 3.4        |
| Pyrene                       | CE087              | mg/kg                | 4.5        | -          | -          | -          | -          | 3.6        |
| PAH (total of USEPA 16)      | CE087              | mg/kg                | 27         | -          | -          | -          | -          | 25         |
| Benzo(j)fluoranthene         | CE087              | mg/kg                | 0.2        | i          | i          | i          | -          | 0.2        |
| PAH (total of OIL 8)         | CE087              | mg/kg                | 12         | -          | -          | -          | -          | 11         |
| ТРН                          |                    |                      |            |            |            |            |            |            |
| TPH Aliphatic EC5-EC6        | CE068              | mg/kg                | <0.1       | -          | -          | -          | -          | <0.1       |
| TPH Aliphatic EC6-EC8        | CE068              | mg/kg                | <0.1       | -          | -          | -          | -          | <0.1       |
| TPH Aliphatic EC8-EC10       | CE068              | mg/kg                | <0.1       | -          | -          | -          | -          | <0.1       |
| TPH Aliphatic EC10-EC12      | CE068              | mg/kg                | <1         | -          | -          | -          | -          | 1          |

## **SOILS**

| Lab number              |        |       | 49559-1    | 49559-2    | 49559-3    | 49559-4    | 49559-5    | 49559-6    |
|-------------------------|--------|-------|------------|------------|------------|------------|------------|------------|
| Sample id               |        |       | BH 1       | BH 1       | BH 2       | BH 3       | BH 3       | BH 4       |
| Depth (m)               |        |       | 0.50       | 2.00       | 0.50       | 0.00-0.40  | 4.00-5.00  | 0.00-0.60  |
| Date sampled            |        |       | 22/10/2013 | 22/10/2013 | 22/10/2013 | 22/10/2013 | 22/10/2013 | 22/10/2013 |
| Test                    | Method | Units |            |            |            |            |            |            |
| TPH Aliphatic EC12-EC16 | CE068  | mg/kg | 6          | ı          | -          | -          | ı          | 9          |
| TPH Aliphatic EC16-EC35 | CE068  | mg/kg | 97         | -          | -          | -          | -          | 263        |
| TPH Aliphatic EC35-EC44 | CE068  | mg/kg | 4          | -          | -          | -          | -          | 17         |
| TPH Aromatic EC5-EC7    | CE068  | mg/kg | <0.01      | -          | -          | -          | -          | <0.01      |
| TPH Aromatic EC7-EC8    | CE068  | mg/kg | <0.01      | -          | -          | -          | -          | <0.01      |
| TPH Aromatic EC8-EC10   | CE068  | mg/kg | <0.01      | -          | -          | -          | -          | <0.01      |
| TPH Aromatic EC10-EC12  | CE068  | mg/kg | <1         | -          | -          | -          | -          | <1         |
| TPH Aromatic EC12-EC16  | CE068  | mg/kg | <1         | -          | -          | -          | -          | <1         |
| TPH Aromatic EC16-EC21  | CE068  | mg/kg | 14         | -          | -          | -          | -          | 13         |
| TPH Aromatic EC21-EC35  | CE068  | mg/kg | 12         | -          | -          | -          | -          | 11         |
| TPH Aromatic EC35-EC44  | CE068  | mg/kg | 1          | -          | -          | -          | -          | 1          |
| Subcontracted analysis  |        |       |            |            |            |            |            |            |
| Asbestos                | \$     | -     | NAD        | -          | NAD        | Chrysotile | -          | Chrysotile |

| Lab mumban                   |                    |                      | 40550.7         |
|------------------------------|--------------------|----------------------|-----------------|
| Lab number<br>Sample id      |                    |                      | 49559-7<br>BH 5 |
| Depth (m)                    |                    |                      | 0.00-0.80       |
| Date sampled                 |                    |                      | 22/10/2013      |
| Test                         | Method             | Units                |                 |
| Arsenic (total)              | CE054 <sup>M</sup> | mg/kg As             | 22              |
| Cadmium (total)              | CE054 <sup>M</sup> | mg/kg Cd             | 0.5             |
| Chromium (total)             | CE054 <sup>M</sup> | mg/kg Cr             | 36              |
| Chromium (III)               | -                  | mg/kg CrIII          | 36              |
| Chromium (VI)                | CE050              | mg/kg CrVI           | <1              |
| Copper (total)               | CE054 <sup>M</sup> | mg/kg Cu             | 74              |
| Lead (total)                 | CE054 <sup>M</sup> | mg/kg Pb             | 279             |
| Mercury (total)              | CE054              | mg/kg Hg             | 0.7             |
| Nickel (total)               | CE054 <sup>M</sup> | mg/kg Ni             | 37              |
| Selenium (total)             | CE054 <sup>M</sup> | mg/kg Se             | 1.8             |
| Zinc (total)                 | CE054 <sup>M</sup> | mg/kg Zn             | 221             |
| рН                           | CE004 <sup>M</sup> | units                | 7.9             |
| Sulphate (2:1 water soluble) | CE049 <sup>U</sup> | mg/I SO <sub>4</sub> | 37              |
| Cyanide (free)               | CE077              | mg/kg CN             | <2              |
| Total Organic Carbon (TOC)   | CE072 <sup>M</sup> | % w/w C              | 5.91            |
| PAH                          |                    |                      |                 |
| Acenaphthene                 | CE087              | mg/kg                | -               |
| Acenaphthylene               | CE087              | mg/kg                | -               |
| Anthracene                   | CE087              | mg/kg                | -               |
| Benzo(a)anthracene           | CE087              | mg/kg                | -               |
| Benzo(a)pyrene               | CE087              | mg/kg                | -               |
| Benzo(b)fluoranthene         | CE087              | mg/kg                | -               |
| Benzo(ghi)perylene           | CE087              | mg/kg                | -               |
| Benzo(k)fluoranthene         | CE087              | mg/kg                | -               |
| Chrysene                     | CE087              | mg/kg                | -               |
| Dibenz(ah)anthracene         | CE087              | mg/kg                | -               |
| Fluoranthene                 | CE087              | mg/kg                | -               |
| Fluorene                     | CE087              | mg/kg                | -               |
| Indeno(123cd)pyrene          | CE087              | mg/kg                | -               |
| Naphthalene                  | CE087              | mg/kg                | -               |
| Phenanthrene                 | CE087              | mg/kg                | -               |
| Pyrene                       | CE087              | mg/kg                | -               |
| PAH (total of USEPA 16)      | CE087              | mg/kg                | -               |
| Benzo(j)fluoranthene         | CE087              | mg/kg                | -               |
| PAH (total of OIL 8)         | CE087              | mg/kg                | -               |
| ТРН                          | <del></del>        |                      |                 |
| TPH Aliphatic EC5-EC6        | CE068              | mg/kg                | -               |
| TPH Aliphatic EC6-EC8        | CE068              | mg/kg                | -               |
| TPH Aliphatic EC8-EC10       | CE068              | mg/kg                | -               |
| TPH Aliphatic EC10-EC12      | CE068              | mg/kg                | -               |
|                              | -2000              |                      |                 |

## **SOILS**

| Lab number              | 49559-7   |       |            |  |  |  |
|-------------------------|-----------|-------|------------|--|--|--|
| Sample id               | Sample id |       |            |  |  |  |
| Depth (m)               | 0.00-0.80 |       |            |  |  |  |
| Date sampled            |           |       | 22/10/2013 |  |  |  |
| Test                    | Method    | Units |            |  |  |  |
| TPH Aliphatic EC12-EC16 | CE068     | mg/kg | -          |  |  |  |
| TPH Aliphatic EC16-EC35 | CE068     | mg/kg | -          |  |  |  |
| TPH Aliphatic EC35-EC44 | CE068     | mg/kg | -          |  |  |  |
| TPH Aromatic EC5-EC7    | CE068     | mg/kg | -          |  |  |  |
| TPH Aromatic EC7-EC8    | CE068     | mg/kg | -          |  |  |  |
| TPH Aromatic EC8-EC10   | CE068     | mg/kg | -          |  |  |  |
| TPH Aromatic EC10-EC12  | CE068     | mg/kg | -          |  |  |  |
| TPH Aromatic EC12-EC16  | CE068     | mg/kg | -          |  |  |  |
| TPH Aromatic EC16-EC21  | CE068     | mg/kg | -          |  |  |  |
| TPH Aromatic EC21-EC35  | CE068     | mg/kg | -          |  |  |  |
| TPH Aromatic EC35-EC44  | CE068     | mg/kg | -          |  |  |  |
| Subcontracted analysis  |           |       |            |  |  |  |
| Asbestos                | \$        | -     | Chrysotile |  |  |  |

# Chemtech Environmental Limited LEACHATES

| Lab number           |                    |                      | 49559-1L  | 49559-3L | 49559-4L |
|----------------------|--------------------|----------------------|-----------|----------|----------|
| Sample id            | BH 1               | BH 2                 | BH 3      |          |          |
| Depth (m)            | 0.50               | 0.50                 | 0.00-0.40 |          |          |
| Test                 | Method             | Units                |           |          |          |
| Arsenic (dissolved)  | CE128 <sup>U</sup> | μg/l As              | 2.03      | 0.81     | 1.29     |
| Boron (dissolved)    | CE128 <sup>U</sup> | μg/l B               | 6         | 34       | 55       |
| Cadmium (dissolved)  | CE128 <sup>U</sup> | μg/l Cd              | <0.07     | <0.07    | <0.07    |
| Chromium (dissolved) | CE128 <sup>U</sup> | μg/l Cr              | 0.3       | 3.0      | 0.2      |
| Copper (dissolved)   | CE128 <sup>U</sup> | μg/l Cu              | 7.7       | 5.8      | 6.8      |
| Lead (dissolved)     | CE128 <sup>U</sup> | μg/l Pb              | 1.9       | 0.3      | 0.3      |
| Mercury (dissolved)  | CE128 <sup>U</sup> | μg/l Hg              | 0.032     | 0.102    | 0.017    |
| Nickel (dissolved)   | CE128 <sup>U</sup> | μg/l Ni              | 0.9       | 2.6      | 1.6      |
| Selenium (dissolved) | CE128 <sup>U</sup> | μg/l Se              | 0.35      | 0.25     | 0.47     |
| Zinc (dissolved)     | CE128 <sup>U</sup> | μg/l Zn              | 3         | 4        | <1       |
| рН                   | CE004 <sup>U</sup> | units                | 7.9       | 7.7      | 7.8      |
| Sulphate             | CE049 <sup>U</sup> | mg/I SO <sub>4</sub> | <10       | <10      | 159      |
| Cyanide (free)       | CE077              | μg/I CN              | <0.02     | <0.02    | <0.02    |

# Chemtech Environmental Limited METHOD DETAILS

| METHOD | SOILS                                      | METHOD SUMMARY                                     | SAMPLE | STATUS | LOD      | UNITS                |
|--------|--------------------------------------------|----------------------------------------------------|--------|--------|----------|----------------------|
| CE054  | Arsenic (total)                            | Aqua regia digest, ICP-OES                         | Dry    | М      | 1        | mg/kg As             |
| CE054  | Cadmium (total)                            | Aqua regia digest, ICP-OES                         | Dry    | М      | 0.2      | mg/kg Cd             |
| CE054  | Chromium (total)                           | Aqua regia digest, ICP-OES                         | Dry    | М      | 1        | mg/kg Cr             |
| -      | Chromium (III)                             | Calculation: Cr (total) - Cr (VI)                  | Dry    |        | 1        | mg/kg CrIII          |
| CE050  | Chromium (VI)                              | Acid extraction, Colorimetry                       | Dry    |        | 1        | mg/kg CrVI           |
| CE054  | Copper (total)                             | Aqua regia digest, ICP-OES                         | Dry    | М      | 1        | mg/kg Cu             |
| CE054  | Lead (total)                               | Aqua regia digest, ICP-OES                         | Dry    | М      | 1        | mg/kg Pb             |
| CE054  | Mercury (total)                            | Aqua regia digest, ICP-OES                         | Dry    |        | 0.5      | mg/kg Hg             |
| CE054  | Nickel (total)                             | Aqua regia digest, ICP-OES                         | Dry    | М      | 1        | mg/kg Ni             |
| CE054  | Selenium (total)                           | Aqua regia digest, ICP-OES                         | Dry    | М      | 0.3      | mg/kg Se             |
| CE054  | Zinc (total)                               | Aqua regia digest, ICP-OES                         | Dry    | М      | 3        | mg/kg Zn             |
| CE004  | рН                                         | Based on BS 1377, pH Meter                         | Wet    | М      | -        | units                |
| CE049  | Sulphate (2:1 water soluble)               | Aqueous extraction, IC-COND                        | Dry    | U      | 10       | mg/I SO <sub>4</sub> |
| CE077  | Cyanide (free)                             | Extraction, Continuous Flow Colorimetry            | Wet    |        | 2        | mg/kg CN             |
| CE072  | Total Organic Carbon (TOC)                 | Removal of IC by acidification, Carbon<br>Analyser | Dry    | М      | 0.1      | % w/w C              |
| CE087  | PAH (speciated)                            | Solvent extraction, GC-MS                          | Wet    |        | 0.1      | mg/kg                |
| CE087  | PAH (total)                                | Solvent extraction, GC-MS                          | Wet    |        | 5        | mg/kg                |
| CE068  | TPH Aliphatic/Aromatic fractions (C5-C10)  | Headspace GC-FID                                   | Wet    |        | 0.01-0.1 | mg/kg                |
| CE068  | TPH Aliphatic/Aromatic fractions (C10-C44) | Solvent extraction, GC-FID                         | Wet    |        | 1        | mg/kg                |
| \$     | Asbestos (qualitative)                     | HSG 248, Microscopy                                | Dry    | U      | -        | -                    |

# Chemtech Environmental Limited METHOD DETAILS

| METHOD | LEACHATES            | METHOD SUMMARY             | STATUS | LOD   | UNITS                |
|--------|----------------------|----------------------------|--------|-------|----------------------|
| CE128  | Arsenic (dissolved)  | ICP-MS                     | U      | 0.06  | μg/l As              |
| CE128  | Boron (dissolved)    | ICP-MS                     | U      | 6     | μg/l B               |
| CE128  | Cadmium (dissolved)  | ICP-MS                     | U      | 0.07  | μg/l Cd              |
| CE128  | Chromium (dissolved) | ICP-MS                     | U      | 0.2   | μg/l Cr              |
| CE128  | Copper (dissolved)   | ICP-MS                     | U      | 0.4   | μg/l Cu              |
| CE128  | Lead (dissolved)     | ICP-MS                     | U      | 0.2   | μg/l Pb              |
| CE128  | Mercury (dissolved)  | ICP-MS                     | U      | 0.008 | μg/l Hg              |
| CE128  | Nickel (dissolved)   | ICP-MS                     | U      | 0.5   | μg/l Ni              |
| CE128  | Selenium (dissolved) | ICP-MS                     | U      | 0.07  | μg/l Se              |
| CE128  | Zinc (dissolved)     | ICP-MS                     | U      | 1     | μg/l Zn              |
| CE004  | рН                   | Based on BS 1377, pH Meter | U      | -     | units                |
| CE049  | Sulphate             | Ion Chromatography         | U      | 10    | mg/I SO <sub>4</sub> |
| CE077  | Cyanide (free)       | Distillation, Colorimetry  |        | 20    | μg/l CN              |

### **DEVIATING SAMPLE INFORMATION**

#### **Comments**

Sample deviation is determined in accordance with the UKAS note "Guidance on Deviating Samples" and based on reference standards and laboratory trials.

For samples identified as deviating, test result(s) may be compromised and may not be representative of the sample at the time of sampling.

Chemtech Environmental Ltd cannot be held responsible for the integrity of sample(s) received if Chemtech Environmental Ltd did not undertake the sampling. Such samples may be deviating.

#### Key

- N No (not deviating sample)
- Y Yes (deviating sample)
- A Sampling date not provided
- B Sampling time not provided (waters only)
- C Sample exceeded holding time(s)
- D Sample not received in appropriate containers
- E Headspace present in sample container
- F Sample not chemically fixed (where appropriate)
- G Sample not cooled
- H Other (specify)

| Lab ref | Sample id | Depth (m) | Deviating | Tests (Reason for deviation) |
|---------|-----------|-----------|-----------|------------------------------|
| 49559-1 | BH 1      | 0.50      | N         |                              |
| 49559-2 | BH 1      | 2.00      | N         |                              |
| 49559-3 | BH 2      | 0.50      | N         |                              |
| 49559-4 | BH 3      | 0.00-0.40 | N         |                              |
| 49559-5 | BH 3      | 4.00-5.00 | N         |                              |
| 49559-6 | BH 4      | 0.00-0.60 | N         |                              |
| 49559-7 | BH 5      | 0.00-0.80 | N         |                              |







#### **ANALYTICAL TEST REPORT**

**Contract no:** 53756(1)

Contract name: Temple Green, South Shields

Client reference: 13-562

Clients name: ARC Environmental

Clients address: Solum House, Unit 1 Elliott Court

St Johns Road Meadowfield DH7 8PN

Samples received: 05 December 2014

Analysis started: 08 December 2014

Analysis completed 18 December 2014

Report issued: 18 December 2014

This is a supplementary report to report number 53756(1) issued 15 December 2014.

**Notes:** Opinions and interpretations expressed herein are outside the UKAS accreditation scope.

Unless otherwise stated, Chemtech Environmental Ltd was not responsible for sampling.

Methods, procedures and performance data are available on request.

Results reported herein relate only to the material supplied to the laboratory. This report shall not be reproduced except in full, withour prior written approval. Samples will be disposed of 6 weeks from initial receipt unless otherwise instructed.

**Key:** U UKAS accredited test

M MCERTS & UKAS accredited test

\$ Test carried out by an approved subcontractor

I/S Insufficient sample to carry out test N/S Sample not suitable for testing

NAD No Asbestos Detected

Approved by:

J. Campbell

Karan Campbell John Campbell

Director Director Customer Services Co-ordinator

Dave Bowerbank

## **SAMPLE INFORMATION**

#### MCERTS (Soils):

Soil descriptions are only intended to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions. MCERTS accreditation applies for sand, clay and loam/topsoil, or combinations of these whether these are derived from naturally occurring soils or from made ground, as long as these materials constitute the major part of the sample. Other materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

All results are reported on a dry basis. Samples dried at no more than 30°C in a drying cabinet. Analytical results are inclusive of stones.

| Lab ref | Sample id | Depth (m) | Sample description     | Material removed | % Removed | % Moisture |
|---------|-----------|-----------|------------------------|------------------|-----------|------------|
| 53756-1 | А         | 0.00-0.50 | Clay                   | -                | -         | 15.4       |
| 53756-2 | В         | 0.00-0.50 | Clay                   | -                | -         | 22.7       |
| 53756-3 | С         | 0.00-0.50 | Sandy Clay with Gravel | -                | -         | 19.5       |
| 53756-4 | D         | 0.00-0.50 | Sandy Clay             | -                | -         | 14.1       |

## **SOILS**

| I - b b                      |                    |                      | F27F6 1      | F27F6 2      | F27F6 2      | F27F6 4      |
|------------------------------|--------------------|----------------------|--------------|--------------|--------------|--------------|
| Lab number<br>Sample id      |                    |                      | 53756-1<br>A | 53756-2<br>B | 53756-3<br>C | 53756-4<br>D |
| Depth (m)                    |                    |                      | 0.00-0.50    | 0.00-0.50    | 0.00-0.50    | 0.00-0.50    |
| Date sampled                 |                    |                      | 05/12/2014   | 05/12/2014   | 05/12/2014   | 05/12/2014   |
| Test                         | Method             | Units                |              |              |              |              |
| Arsenic (total)              | CE127 <sup>M</sup> | mg/kg As             | 6.0          | 7.2          | 11           | 9.9          |
| Cadmium (total)              | CE127 <sup>M</sup> | mg/kg Cd             | <0.2         | <0.2         | 0.6          | 0.9          |
| Chromium (total)             | CE127 <sup>M</sup> | mg/kg Cr             | 66           | 69           | 71           | 74           |
| Chromium (III)               | -                  | mg/kg CrIII          | 66           | 69           | 71           | 74           |
| Chromium (VI)                | CE050              | mg/kg CrVI           | <1           | <1           | <1           | <1           |
| Copper (total)               | CE127 <sup>M</sup> | mg/kg Cu             | 19           | 27           | 95           | 57           |
| Lead (total)                 | CE127 <sup>M</sup> | mg/kg Pb             | 25           | 55           | 129          | 173          |
| Mercury (total)              | CE127 <sup>M</sup> | mg/kg Hg             | <0.5         | <0.5         | <0.5         | <0.5         |
| Nickel (total)               | CE127 <sup>M</sup> | mg/kg Ni             | 32           | 34           | 40           | 25           |
| Selenium (total)             | CE127 <sup>M</sup> | mg/kg Se             | 1.2          | 1.3          | 1.2          | 1.0          |
| Zinc (total)                 | CE127 <sup>M</sup> | mg/kg Zn             | 59           | 85           | 297          | 309          |
| рН                           | CE004 <sup>M</sup> | units                | 7.8          | 7.7          | 7.9          | 7.8          |
| Sulphate (2:1 water soluble) | CE061 <sup>M</sup> | mg/I SO <sub>4</sub> | 89           | 340          | 126          | 564          |
| Cyanide (free)               | CE077              | mg/kg CN             | <2           | <2           | <2           | <2           |
| Total Organic Carbon (TOC)   | CE072 <sup>M</sup> | % w/w C              | 0.85         | 1.39         | 4.40         | 3.27         |
| РАН                          |                    |                      |              |              |              |              |
| Acenaphthene                 | CE087              | mg/kg                | <0.01        | <0.01        | 1.28         | 0.50         |
| Acenaphthylene               | CE087              | mg/kg                | <0.01        | <0.01        | 0.07         | 0.05         |
| Anthracene                   | CE087              | mg/kg                | <0.01        | 0.06         | 3.92         | 1.25         |
| Benzo(a)anthracene           | CE087              | mg/kg                | <0.01        | 0.21         | 5.92         | 2.86         |
| Benzo(a)pyrene               | CE087              | mg/kg                | <0.01        | 0.15         | 4.56         | 2.75         |
| Benzo(b)fluoranthene         | CE087              | mg/kg                | <0.01        | 0.24         | 6.15         | 3.76         |
| Benzo(ghi)perylene           | CE087              | mg/kg                | <0.01        | 0.08         | 2.39         | 1.89         |
| Benzo(k)fluoranthene         | CE087              | mg/kg                | <0.01        | 0.08         | 2.61         | 1.58         |
| Chrysene                     | CE087              | mg/kg                | <0.01        | 0.19         | 5.01         | 2.62         |
| Dibenz(ah)anthracene         | CE087              | mg/kg                | <0.01        | 0.02         | 0.93         | 0.58         |
| Fluoranthene                 | CE087              | mg/kg                | <0.01        | 0.42         | 13.18        | 6.40         |
| Fluorene                     | CE087              | mg/kg                | <0.01        | <0.01        | 1.74         | 0.61         |
| Indeno(123cd)pyrene          | CE087              | mg/kg                | <0.01        | 0.09         | 2.78         | 1.98         |
| Naphthalene                  | CE087              | mg/kg                | <0.01        | <0.01        | 0.16         | 0.18         |
| Phenanthrene                 | CE087              | mg/kg                | 0.01         | 0.19         | 9.38         | 4.46         |
| Pyrene                       | CE087              | mg/kg                | <0.01        | 0.33         | 9.46         | 4.61         |
| PAH (total of USEPA 16)      | CE087              | mg/kg                | <0.16        | 2.06         | 69.6         | 36.1         |
| Benzo(j)fluoranthene         | CE087              | mg/kg                | <0.01        | 0.01         | 1.24         | 1.08         |
| PAH (total of OIL 8)         | CE087              | mg/kg                | <0.08        | 0.97         | 28.3         | 16.6         |
| BTEX & TPH                   |                    |                      |              |              |              |              |
| Benzene                      | CE057 <sup>U</sup> | mg/kg                | <0.01        | <0.01        | <0.01        | <0.01        |
| Toluene                      | CE057 <sup>U</sup> | mg/kg                | <0.01        | <0.01        | <0.01        | <0.01        |
| Ethylbenzene                 | CE057 <sup>U</sup> | mg/kg                | <0.01        | <0.01        | <0.01        | <0.01        |
| m & p-Xylene                 | CE057 <sup>U</sup> | mg/kg                | <0.01        | <0.01        | <0.01        | <0.01        |
| o-Xylene                     | CE057 <sup>U</sup> | mg/kg                | <0.01        | <0.01        | <0.01        | <0.01        |

## **SOILS**

| Lab number              |        |       | 53756-1    | 53756-2    | 53756-3    | 53756-4    |
|-------------------------|--------|-------|------------|------------|------------|------------|
| Sample id               |        |       | Α          | В          | С          | D          |
| Depth (m)               |        |       | 0.00-0.50  | 0.00-0.50  | 0.00-0.50  | 0.00-0.50  |
| Date sampled            |        |       | 05/12/2014 | 05/12/2014 | 05/12/2014 | 05/12/2014 |
| Test                    | Method | Units |            |            |            |            |
| TPH Aliphatic EC5-EC6   | CE068  | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       |
| TPH Aliphatic EC6-EC8   | CE068  | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       |
| TPH Aliphatic EC8-EC10  | CE068  | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       |
| TPH Aliphatic EC10-EC12 | CE068  | mg/kg | 4          | 3          | 3          | 5          |
| TPH Aliphatic EC12-EC16 | CE068  | mg/kg | 4          | 5          | 7          | 28         |
| TPH Aliphatic EC16-EC35 | CE068  | mg/kg | 4          | 40         | 203        | 582        |
| TPH Aliphatic EC35-EC44 | CE068  | mg/kg | <1         | 2          | 47         | 149        |
| TPH Aromatic EC5-EC7    | CE068  | mg/kg | <0.01      | <0.01      | <0.01      | <0.01      |
| TPH Aromatic EC7-EC8    | CE068  | mg/kg | <0.01      | <0.01      | <0.01      | <0.01      |
| TPH Aromatic EC8-EC10   | CE068  | mg/kg | <0.01      | <0.01      | <0.01      | <0.01      |
| TPH Aromatic EC10-EC12  | CE068  | mg/kg | <1         | <1         | <1         | <1         |
| TPH Aromatic EC12-EC16  | CE068  | mg/kg | <1         | <1         | 1          | <1         |
| TPH Aromatic EC16-EC21  | CE068  | mg/kg | <1         | 1          | 38         | 17         |
| TPH Aromatic EC21-EC35  | CE068  | mg/kg | <1         | 1          | 30         | 18         |
| TPH Aromatic EC35-EC44  | CE068  | mg/kg | <1         | <1         | 1          | 1          |
| Subcontracted analysis  |        |       |            |            |            |            |
| Asbestos                | \$     | -     | NAD        | Chrysotile | Chrysotile | Chrysotile |
| Asbestos (quantitative) | \$     | % w/w | -          | <0.001     | i          | <0.001     |

# Chemtech Environmental Limited LEACHATES

| Lab number              |                    |                      | F27F6 11      |
|-------------------------|--------------------|----------------------|---------------|
| Sample id               |                    |                      | 53756-1L<br>A |
| Depth (m)               |                    |                      | 0.00-0.50     |
| Test                    | Method             | Units                |               |
| Arsenic (dissolved)     | CE128 <sup>U</sup> | μg/l As              | 0.08          |
| Boron (dissolved)       | CE128 <sup>U</sup> | μg/l B               | 9             |
| Cadmium (dissolved)     | CE128 <sup>U</sup> | μg/l Cd              | <0.07         |
| Chromium (dissolved)    | CE128 <sup>U</sup> | μg/l Cr              | 0.3           |
| Copper (dissolved)      | CE128 <sup>U</sup> | μg/l Cu              | <0.4          |
| Lead (dissolved)        | CE128 <sup>U</sup> | μg/l Pb              | <0.2          |
| Mercury (dissolved)     | CE128 <sup>U</sup> | μg/l Hg              | <0.008        |
| Nickel (dissolved)      | CE128 <sup>U</sup> | μg/l Ni              | <0.5          |
| Selenium (dissolved)    | CE128 <sup>U</sup> | μg/l Se              | 0.13          |
| Zinc (dissolved)        | CE128 <sup>U</sup> | μg/l Zn              | <1            |
| рН                      | CE004 <sup>U</sup> | units                | 8.4           |
| Sulphate                | CE049 <sup>U</sup> | mg/l SO <sub>4</sub> | 16            |
| Cyanide (free)          | CE077              | μg/l CN              | <20           |
| PAHs                    |                    |                      |               |
| Acenaphthene            | CE087              | μg/l                 | <0.1          |
| Acenaphthylene          | CE087              | μg/l                 | <0.1          |
| Anthracene              | CE087              | μg/l                 | <0.1          |
| Benzo(a)anthracene      | CE087              | μg/l                 | <0.1          |
| Benzo(a)pyrene          | CE087              | μg/l                 | <0.1          |
| Benzo(b)fluoranthene    | CE087              | μg/l                 | <0.1          |
| Benzo(ghi)perylene      | CE087              | μg/l                 | <0.1          |
| Benzo(k)fluoranthene    | CE087              | μg/l                 | <0.1          |
| Chrysene                | CE087              | μg/l                 | <0.1          |
| Dibenz(ah)anthracene    | CE087              | μg/l                 | <0.1          |
| Fluoranthene            | CE087              | μg/l                 | <0.1          |
| Fluorene                | CE087              | μg/l                 | <0.1          |
| Indeno(123cd)pyrene     | CE087              | μg/l                 | <0.1          |
| Naphthalene             | CE087              | μg/l                 | <0.1          |
| Phenanthrene            | CE087              | μg/l                 | <0.1          |
| Pyrene                  | CE087              | μg/l                 | <0.1          |
| PAH (total of USEPA 16) | CE087              | μg/l                 | <1.6          |
| Benzo(j)fluoranthene    | CE087              | μg/l                 | <0.1          |
| PAH (total of OIL 8)    | CE087              | μg/l                 | <0.8          |
| BTEX & TPH              |                    |                      |               |
| Benzene                 | CE057 <sup>U</sup> | μg/l                 | <1            |
| Toluene                 | CE057 <sup>U</sup> | μg/l                 | <1            |
| Ethylbenzene            | CE057 <sup>U</sup> | μg/l                 | <1            |
| m & p-Xylene            | CE057 <sup>U</sup> | μg/l                 | <1            |
| o-Xylene                | CE057 <sup>U</sup> | μg/l                 | <1            |
| TPH Aromatic EC5-EC7    | CE068              | μg/l                 | <1            |
| TPH Aromatic EC7-EC8    | CE068              | μg/l                 | <1            |

# Chemtech Environmental Limited LEACHATES

| Lab number              |           |       | 53756-1L  |  |  |  |
|-------------------------|-----------|-------|-----------|--|--|--|
| Sample id               | Sample id |       |           |  |  |  |
| Depth (m)               |           |       | 0.00-0.50 |  |  |  |
| Test                    | Method    | Units |           |  |  |  |
| TPH Aromatic EC8-EC10   | CE068     | μg/l  | <1        |  |  |  |
| TPH Aromatic EC10-EC12  | CE068     | μg/l  | <1        |  |  |  |
| TPH Aromatic EC12-EC16  | CE068     | μg/l  | <1        |  |  |  |
| TPH Aromatic EC16-EC21  | CE068     | μg/l  | <1        |  |  |  |
| TPH Aromatic EC21-EC35  | CE068     | μg/l  | <1        |  |  |  |
| TPH Aromatic EC35-EC44  | CE068     | μg/l  | <1        |  |  |  |
| TPH Aliphatic EC5-EC6   | CE068     | μg/l  | <1        |  |  |  |
| TPH Aliphatic EC6-EC8   | CE068     | μg/l  | <1        |  |  |  |
| TPH Aliphatic EC8-EC10  | CE068     | μg/l  | <1        |  |  |  |
| TPH Aliphatic EC10-EC12 | CE068     | μg/l  | <1        |  |  |  |
| TPH Aliphatic EC12-EC16 | CE068     | μg/l  | <1        |  |  |  |
| TPH Aliphatic EC16-EC35 | CE068     | μg/l  | <1        |  |  |  |
| TPH Aliphatic EC35-EC44 | CE068     | μg/l  | <1        |  |  |  |

# Chemtech Environmental Limited METHOD DETAILS

| METHOD | SOILS                                     | METHOD SUMMARY                                     | SAMPLE | STATUS | LOD      | UNITS                |
|--------|-------------------------------------------|----------------------------------------------------|--------|--------|----------|----------------------|
| CE127  | Arsenic (total)                           | Aqua regia digest, ICP-MS                          | Dry    | М      | 1        | mg/kg As             |
| CE127  | Cadmium (total)                           | Aqua regia digest, ICP-MS                          | Dry    | М      | 0.2      | mg/kg Cd             |
| CE127  | Chromium (total)                          | Aqua regia digest, ICP-MS                          | Dry    | М      | 1        | mg/kg Cr             |
| -      | Chromium (III)                            | Calculation: Cr (total) - Cr (VI)                  | Dry    |        | 1        | mg/kg CrIII          |
| CE050  | Chromium (VI)                             | Acid extraction, Colorimetry                       | Dry    |        | 1        | mg/kg CrVI           |
| CE127  | Copper (total)                            | Aqua regia digest, ICP-MS                          | Dry    | М      | 1        | mg/kg Cu             |
| CE127  | Lead (total)                              | Aqua regia digest, ICP-MS                          | Dry    | М      | 1        | mg/kg Pb             |
| CE127  | Mercury (total)                           | Aqua regia digest, ICP-MS                          | Dry    | М      | 0.5      | mg/kg Hg             |
| CE127  | Nickel (total)                            | Aqua regia digest, ICP-MS                          | Dry    | М      | 1        | mg/kg Ni             |
| CE127  | Selenium (total)                          | Aqua regia digest, ICP-MS                          | Dry    | М      | 0.3      | mg/kg Se             |
| CE127  | Zinc (total)                              | Aqua regia digest, ICP-MS                          | Dry    | М      | 5        | mg/kg Zn             |
| CE004  | рН                                        | Based on BS 1377, pH Meter                         | Wet    | М      | -        | units                |
| CE061  | Sulphate (2:1 water soluble)              | Aqueous extraction, ICP-OES                        | Dry    | М      | 10       | mg/I SO <sub>4</sub> |
| CE077  | Cyanide (free)                            | Extraction, Continuous Flow Colorimetry            | Wet    |        | 2        | mg/kg CN             |
| CE072  | Total Organic Carbon (TOC)                | Removal of IC by acidification, Carbon<br>Analyser | Dry    | М      | 0.1      | % w/w C              |
| CE068  | TPH Aliphatic/Aromatic fractions (C5-C10) |                                                    | Wet    |        | 0.01-0.1 | mg/kg                |
| CE068  | TPH Aliphatic/Aromatic fractions (C10-C44 | Solvent extraction, GC-FID                         | Wet    |        | 1        | mg/kg                |
| \$     | Asbestos (qualitative)                    | HSG 248, Microscopy                                | Dry    | U      | -        | -                    |
| \$     | Asbestos (quantitative)                   | HSG 248, Microscopy & Gravimetry                   | Dry    |        | 0.001    | % w/w                |

# Chemtech Environmental Limited METHOD DETAILS

| METHOD | LEACHATES                                  | METHOD SUMMARY             | STATUS | LOD   | UNITS                |
|--------|--------------------------------------------|----------------------------|--------|-------|----------------------|
| CE128  | Arsenic (dissolved)                        | ICP-MS                     | U      | 0.06  | μg/l As              |
| CE128  | Boron (dissolved)                          | ICP-MS                     | U      | 6     | μg/l B               |
| CE128  | Cadmium (dissolved)                        | ICP-MS                     | U      | 0.07  | μg/l Cd              |
| CE128  | Chromium (dissolved)                       | ICP-MS                     | U      | 0.2   | μg/l Cr              |
| CE128  | Copper (dissolved)                         | ICP-MS                     | U      | 0.4   | μg/l Cu              |
| CE128  | Lead (dissolved)                           | ICP-MS                     | U      | 0.2   | μg/l Pb              |
| CE128  | Mercury (dissolved)                        | ICP-MS                     | U      | 0.008 | μg/l Hg              |
| CE128  | Nickel (dissolved)                         | ICP-MS                     | U      | 0.5   | μg/l Ni              |
| CE128  | Selenium (dissolved)                       | ICP-MS                     | U      | 0.07  | μg/l Se              |
| CE128  | Zinc (dissolved)                           | ICP-MS                     | U      | 1     | μg/l Zn              |
| CE004  | рН                                         | Based on BS 1377, pH Meter | U      | -     | units                |
| CE049  | Sulphate                                   | Ion Chromatography         | U      | 10    | mg/l SO <sub>4</sub> |
| CE077  | Cyanide (free)                             | Distillation, Colorimetry  |        | 20    | μg/I CN              |
| CE087  | PAH (speciated)                            | Solvent extraction, GC-MS  |        | 0.1   | μg/l                 |
| CE068  | TPH Aliphatic/Aromatic fractions (C5-C10)  | Headspace GC-FID           |        | 1     | μg/l                 |
| CE068  | TPH Aliphatic/Aromatic fractions (C10-C44) | Solvent extraction, GC-FID |        | 1     | μg/l                 |

### **DEVIATING SAMPLE INFORMATION**

#### **Comments**

Sample deviation is determined in accordance with the UKAS note "Guidance on Deviating Samples" and based on reference standards and laboratory trials.

For samples identified as deviating, test result(s) may be compromised and may not be representative of the sample at the time of sampling.

Chemtech Environmental Ltd cannot be held responsible for the integrity of sample(s) received if Chemtech Environmental Ltd did not undertake the sampling. Such samples may be deviating.

#### Key

- N No (not deviating sample)
- Y Yes (deviating sample)
- A Sampling date not provided
- B Sampling time not provided (waters only)
- C Sample exceeded holding time(s)
- D Sample not received in appropriate containers
- E Headspace present in sample container
- F Sample not chemically fixed (where appropriate)
- G Sample not cooled
- H Other (specify)

| Lab ref | Sample id | Depth (m) | Deviating | Tests (Reason for deviation) |
|---------|-----------|-----------|-----------|------------------------------|
| 53756-1 | Α         | 0.00-0.50 | N         |                              |
| 53756-2 | В         | 0.00-0.50 | N         |                              |
| 53756-3 | С         | 0.00-0.50 | N         |                              |
| 53756-4 | D         | 0.00-0.50 | N         |                              |







#### **ANALYTICAL TEST REPORT**

Contract no: 53848

Contract name: Temple Green, South Shields

Client reference: 13-562

Clients name: ARC Environmental

Clients address: Solum House, Unit 1 Elliott Court

St Johns Road Meadowfield DH7 8PN

Samples received: 05 December 2014

Analysis started: 15 December 2014

Analysis completed 18 December 2014

Report issued: 18 December 2014

**Notes:** Opinions and interpretations expressed herein are outside the UKAS accreditation scope.

Unless otherwise stated, Chemtech Environmental Ltd was not responsible for sampling.

 $\label{eq:methods} \mbox{Methods, procedures and performance data are available on request.}$ 

Results reported herein relate only to the material supplied to the laboratory. This report shall not be reproduced except in full, withour prior written approval. Samples will be disposed of 6 weeks from initial receipt unless otherwise instructed.

**Key:** U UKAS accredited test

 $\ensuremath{\mathsf{M}}$  MCERTS & UKAS accredited test

\$ Test carried out by an approved subcontractor

I/S Insufficient sample to carry out test N/S Sample not suitable for testing

Approved by:

Karan Campbell Director John Campbell Director Dave Bowerbank

Customer Services Co-ordinator

## **SAMPLE INFORMATION**

#### MCERTS (Soils):

Soil descriptions are only intended to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions. MCERTS accreditation applies for sand, clay and loam/topsoil, or combinations of these whether these are derived from naturally occurring soils or from made ground, as long as these materials constitute the major part of the sample. Other materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

All results are reported on a dry basis. Samples dried at no more than  $30^{\circ}$ C in a drying cabinet. Analytical results are inclusive of stones.

| Lab ref | Sample id | Depth (m) | Sample description     | Material removed | % Removed | % Moisture |
|---------|-----------|-----------|------------------------|------------------|-----------|------------|
| 53848-1 | С         | 0.00-0.50 | Sandy Clay with Gravel | -                | -         | 19.5       |
| 53848-2 | D         | 0.00-0.50 | Sandy Clay             | -                | -         | 14.1       |

## **SOILS**

| Lab number         |                    |            | 53848-1 | 53848-2 |
|--------------------|--------------------|------------|---------|---------|
| Sample id          |                    |            | С       | D       |
| Depth (m)          | 0.00-0.50          | 0.00-0.50  |         |         |
| Date sampled       | 05/12/2014         | 05/12/2014 |         |         |
| Test               | Method             | Units      |         |         |
| Antimony (total)   | CE127 <sup>M</sup> | mg/kg Sb   | 7.8     | 4.8     |
| Arsenic (total)    | CE127 <sup>M</sup> | mg/kg As   | 11      | 9.9     |
| Barium (total)     | CE127 <sup>M</sup> | mg/kg Ba   | 317     | 533     |
| Cadmium (total)    | CE127 <sup>M</sup> | mg/kg Cd   | 0.6     | 0.9     |
| Chromium (total)   | CE127 <sup>M</sup> | mg/kg Cr   | 71      | 74      |
| Copper (total)     | CE127 <sup>M</sup> | mg/kg Cu   | 95      | 57      |
| Lead (total)       | CE127 <sup>M</sup> | mg/kg Pb   | 129     | 173     |
| Mercury (total)    | CE127 <sup>M</sup> | mg/kg Hg   | <0.5    | <0.5    |
| Molybdenum (total) | CE127 <sup>M</sup> | mg/kg Mo   | 7.4     | 6.1     |
| Nickel (total)     | CE127 <sup>M</sup> | mg/kg Ni   | 40      | 25      |
| Selenium (total)   | CE127 <sup>M</sup> | mg/kg Se   | 1.2     | 1.0     |
| Zinc (total)       | CE127 <sup>M</sup> | mg/kg Zn   | 297     | 309     |

# Chemtech Environmental Limited METHOD DETAILS

| METHOD | SOILS              | METHOD SUMMARY            | SAMPLE | STATUS | LOD | UNITS    |
|--------|--------------------|---------------------------|--------|--------|-----|----------|
| CE127  | Antimony (total)   | Aqua regia digest, ICP-MS | Dry    | М      | 0.2 | mg/kg Sb |
| CE127  | Arsenic (total)    | Aqua regia digest, ICP-MS | Dry    | М      | 1   | mg/kg As |
| CE127  | Barium (total)     | Aqua regia digest, ICP-MS | Dry    | М      | 1   | mg/kg Ba |
| CE127  | Cadmium (total)    | Aqua regia digest, ICP-MS | Dry    | М      | 0.2 | mg/kg Cd |
| CE127  | Chromium (total)   | Aqua regia digest, ICP-MS | Dry    | М      | 1   | mg/kg Cr |
| CE127  | Copper (total)     | Aqua regia digest, ICP-MS | Dry    | М      | 1   | mg/kg Cu |
| CE127  | Lead (total)       | Aqua regia digest, ICP-MS | Dry    | М      | 1   | mg/kg Pb |
| CE127  | Mercury (total)    | Aqua regia digest, ICP-MS | Dry    | М      | 0.5 | mg/kg Hg |
| CE127  | Molybdenum (total) | Aqua regia digest, ICP-MS | Dry    | М      | 1   | mg/kg Mo |
| CE127  | Nickel (total)     | Aqua regia digest, ICP-MS | Dry    | М      | 1   | mg/kg Ni |
| CE127  | Selenium (total)   | Aqua regia digest, ICP-MS | Dry    | М      | 0.3 | mg/kg Se |
| CE127  | Zinc (total)       | Aqua regia digest, ICP-MS | Dry    | М      | 5   | mg/kg Zn |

### **DEVIATING SAMPLE INFORMATION**

#### **Comments**

Sample deviation is determined in accordance with the UKAS note "Guidance on Deviating Samples" and based on reference standards and laboratory trials.

For samples identified as deviating, test result(s) may be compromised and may not be representative of the sample at the time of sampling.

Chemtech Environmental Ltd cannot be held responsible for the integrity of sample(s) received if Chemtech Environmental Ltd did not undertake the sampling. Such samples may be deviating.

#### Key

- N No (not deviating sample)
- Y Yes (deviating sample)
- A Sampling date not provided
- B Sampling time not provided (waters only)
- C Sample exceeded holding time(s)
- D Sample not received in appropriate containers
- E Headspace present in sample container
- F Sample not chemically fixed (where appropriate)
- G Sample not cooled
- H Other (specify)

| Lab ref | Sample id | Depth (m) | Deviating | Tests (Reason for deviation) |
|---------|-----------|-----------|-----------|------------------------------|
| 53848-1 | С         | 0.00-0.50 | N         |                              |
| 53848-2 | D         | 0.00-0.50 | N         |                              |

### Waste Acceptance Criteria Testing BS EN 12457-Part 3, 2 Stage Process



#### **Sample Details**

Contract Name Temple Green, South Shields

 Lab Number
 53848-1

 Sample ID
 C 0.00-0

Sample ID C 0.00-0.50m

Date Sampled 5 December 2014

Date Received 5 December 2014

Particle Size (<4mm) 
Method of size reduction N/A

Non-crushable matter N/A

#### **Test Values**

Mass of Raw Test Portion (MW) kg 0.206
Mass of Dried Test Portion (MD) kc 0.175
Moisture Content Ratio (MC) % 15.05
Dry Matter Content Ratio (DR) % 84.95
Leachant Volume (1) (L2) Litre 0.324
Leachant Volume (2) (L8) Litre 1.400
Eluate Volume (1) (VE1) Litre 0.260
Eluate Volume (2) (VE2) Litre 1.305

| Eluate Analysis                   | Conc in Eluate |        |
|-----------------------------------|----------------|--------|
| Liquid : Waste Ratio              | 2:1            | 8:1    |
| pH (units)                        | 8.2            | 9.2    |
| Temperature (°C)                  | 20             | 20     |
| Conductivity (µS/cm)              | 413            | 170    |
| Arsenic (μg/l As)                 | 1.47           | 3.89   |
| Barium (µg/l Ba)                  | 51.2           | 23.6   |
| Cadmium (µg/l Cd)                 | < 0.07         | <0.07  |
| Chromium (µg/l Cr)                | 2.6            | 1.4    |
| Copper (µg/l Cu)                  | 17.8           | 13.5   |
| Mercury (μg/l Hg)                 | 0.022          | 0.021  |
| Molybdenum (µg/l Mo)              | 37.0           | 11.8   |
| Nickel (µg/l Ni)                  | 3.1            | 0.5    |
| Lead (μg/l Pb)                    | 0.5            | 1.2    |
| Antimony (μg/l Sb)                | 10.9           | 6.1    |
| Selenium (µg/l Se)                | 1.07           | 1.40   |
| Zinc (µg/l Zn)                    | 438            | <1     |
| Chloride (mg/l Cl)                | 11             | 5.6    |
| Fluoride (mg/l F)                 | 1.7            | 1.0    |
| Sulphate (mg/l SO <sub>4</sub> )  | 88             | 21     |
| Total Dissolved Solids (mg/l TDS) | 315            | 130    |
| Phenol Index (mg/l PhOH)          | < 0.01         | < 0.01 |
| Dissolved Organic Carbon (mg/l C  | 213            | 8.5    |

| Amount  | Leached | BS EN 1 | 2457-3 Lim   | it Values |
|---------|---------|---------|--------------|-----------|
|         |         | mg      | /kg at L:S 1 | LO:1      |
|         |         | Inert   | Non-reactive | Hazardous |
| 2:1     | 10:1    | Waste   | Hazardous    | Waste     |
| mg/kg   | mg/kg   |         | Waste        |           |
| 0.003   | 0.035   | 0.5     | 2            | 25        |
| 0.102   | 0.277   | 20      | 100          | 300       |
| <0.0002 | <0.0007 | 0.04    | 1            | 5         |
| 0.005   | 0.016   | 0.5     | 10           | 70        |
| 0.036   | 0.141   | 2       | 50           | 100       |
| 0.00004 | 0.00021 | 0.01    | 0.2          | 2         |
| 0.074   | 0.155   | 0.5     | 10           | 30        |
| 0.006   | 0.009   | 0.4     | 10           | 40        |
| 0.001   | 0.011   | 0.5     | 10           | 50        |
| 0.022   | 0.068   | 0.06    | 0.7          | 5         |
| 0.002   | 0.014   | 0.1     | 0.5          | 7         |
| 0.877   | <0.660  | 4       | 50           | 200       |
| 22      | 64      | 800     | 15000        | 25000     |
| 3.4     | 11      | 10      | 150          | 500       |
| 176     | 310     | 1000    | 20000        | 50000     |
| 631     | 1575    | 4000    | 60000        | 100000    |
| <0.02   | <0.1    | 1       |              |           |
| 426     | 389     | 500     | 800          | 1000      |

| Waste Analysis                     | Units    | Result |     |         |          |
|------------------------------------|----------|--------|-----|---------|----------|
| Total Organic Carbon               | % w/w    | 4.4    | 3%  | 5%      | 6%       |
| Loss on Ignition                   | % w/w    | 5.2    |     |         | 10%      |
| втех                               | mg/kg    | <0.01  | 6   |         |          |
| PCBs (7 congeners)                 | mg/kg    | <0.035 | 1   |         |          |
| Mineral Oil (C10 - C40)            | mg/kg    | 264    | 500 |         |          |
| PAH (total)                        | mg/kg    | 69.6   | 100 |         |          |
| рН                                 | pH units | 7.9    |     | >6      |          |
| Acid Neutralisation Capacity (pH4) | mol/kg   | 0.16   |     | To be e | valuated |
| Acid Neutralisation Capacity (pH7) | mol/kg   | 0.04   |     | To be e | valuated |

Disclaimer: The Landfill Waste Acceptance Criteria limits in this report are provided for guidance only. Chemtech Environmental Ltd does not take responsibility for any errors or omissions. Data is correct as of 01/09/2005. Samples will be disposed of 6 weeks from initial receipt unless written instructions are received and further storage is agreed. Waste Acceptance Criteria testing is outside the scope of the laboratory's UKAS accreditation.

Authorised by: \( \square \). Campbell \( \text{Name:} \)

Report date: 18 December 2014 Position: Director

### Waste Acceptance Criteria Testing BS EN 12457-Part 3, 2 Stage Process



#### **Sample Details**

Contract Name Temple Green, South Shields

Lab Number 53848-2
Sample ID D 0.00-0.50m
Date Sampled 5 December 2014
Date Received 5 December 2014

Particle Size (<4mm) 
Method of size reduction N/A

Non-crushable matter N/A

#### **Test Values**

Mass of Raw Test Portion (MW) kg 0.197
Mass of Dried Test Portion (MD) kc 0.175
Moisture Content Ratio (MC) % 11.17
Dry Matter Content Ratio (DR) % 88.83
Leachant Volume (1) (L2) Litre 0.331
Leachant Volume (2) (L8) Litre 1.400
Eluate Volume (1) (VE1) Litre 0.245
Eluate Volume (2) (VE2) Litre 1.285

| Eluate Analysis                   | Conc in Eluate |        |  |
|-----------------------------------|----------------|--------|--|
| Liquid : Waste Ratio              | 2:1            | 8:1    |  |
| pH (units)                        | 8.1            | 9.7    |  |
| Temperature (°C)                  | 20             | 20     |  |
| Conductivity (µS/cm)              | 979            | 209    |  |
| Arsenic (µg/l As)                 | 3.66           | 6.30   |  |
| Barium (µg/l Ba)                  | 44.2           | 15.4   |  |
| Cadmium (µg/l Cd)                 | < 0.07         | <0.07  |  |
| Chromium (µg/l Cr)                | 14.6           | 4.5    |  |
| Copper (µg/l Cu)                  | 14.3           | 14.2   |  |
| Mercury (μg/l Hg)                 | 0.014          | <0.008 |  |
| Molybdenum (µg/l Mo)              | 18.2           | 5.4    |  |
| Nickel (µg/l Ni)                  | 0.9            | <0.5   |  |
| Lead (µg/l Pb)                    | <0.2           | 0.6    |  |
| Antimony (μg/l Sb)                | 10.8           | 5.3    |  |
| Selenium (µg/l Se)                | 1.58           | 1.43   |  |
| Zinc (µg/l Zn)                    | 9              | <1     |  |
| Chloride (mg/l Cl)                | 9.5            | 4.5    |  |
| Fluoride (mg/l F)                 | 1.3            | 0.6    |  |
| Sulphate (mg/l SO <sub>4</sub> )  | 508            | 53     |  |
| Total Dissolved Solids (mg/l TDS) | 745            | 160    |  |
| Phenol Index (mg/l PhOH)          | < 0.01         | <0.01  |  |
| Dissolved Organic Carbon (mg/l C  | 13             | 9.3    |  |

| Amount  | Leached  |                              | 2457-3 Lim<br>/kg at L:S 1 |        |  |  |
|---------|----------|------------------------------|----------------------------|--------|--|--|
|         |          | Inert Non-reactive Hazardous |                            |        |  |  |
| 2:1     | 10:1     | Waste                        | Hazardous                  | Waste  |  |  |
| mg/kg   | mg/kg    |                              | Waste                      |        |  |  |
|         |          |                              |                            |        |  |  |
| 0.007   | 0.059    | 0.5                          | 2                          | 25     |  |  |
| 0.089   | 0.194    | 20                           | 100                        | 300    |  |  |
| <0.0002 | <0.0007  | 0.04                         | 1                          | 5      |  |  |
| 0.029   | 0.059    | 0.5                          | 10                         | 70     |  |  |
| 0.029   | 0.142    | 2                            | 50                         | 100    |  |  |
| 0.00003 | <0.00009 | 0.01                         | 0.2                        | 2      |  |  |
| 0.036   | 0.072    | 0.5                          | 10                         | 30     |  |  |
| 0.002   | <0.006   | 0.4                          | 10                         | 40     |  |  |
| <0.0004 | <0.006   | 0.5                          | 10                         | 50     |  |  |
| 0.022   | 0.061    | 0.06                         | 0.7                        | 5      |  |  |
| 0.003   | 0.015    | 0.1                          | 0.5                        | 7      |  |  |
| 0.018   | <0.022   | 4                            | 50                         | 200    |  |  |
| 19      | 52       | 800                          | 15000                      | 25000  |  |  |
| 2.6     | 7.0      | 10                           | 150                        | 500    |  |  |
| 1018    | 1167     | 1000                         | 20000                      | 50000  |  |  |
| 1492    | 2419     | 4000                         | 60000                      | 100000 |  |  |
| <0.02   | <0.1     | 1                            |                            |        |  |  |
| 26      | 98       | 500                          | 800                        | 1000   |  |  |

| Waste Analysis                     | Units    | Result |     |                 |     |
|------------------------------------|----------|--------|-----|-----------------|-----|
| Total Organic Carbon               | % w/w    | 3.3    | 3%  | 5%              | 6%  |
| Loss on Ignition                   | % w/w    | 6.5    |     |                 | 10% |
| BTEX                               | mg/kg    | <0.01  | 6   |                 |     |
| PCBs (7 congeners)                 | mg/kg    | <0.035 | 1   |                 |     |
| Mineral Oil (C10 - C40)            | mg/kg    | 767    | 500 |                 |     |
| PAH (total)                        | mg/kg    | 36.1   | 100 |                 |     |
| pH                                 | pH units | 7.8    |     | >6              |     |
| Acid Neutralisation Capacity (pH4) | mol/kg   | 0.15   |     | To be evaluated |     |
| Acid Neutralisation Capacity (pH7) | mol/kg   | 0.03   |     | To be evaluated |     |

Disclaimer: The Landfill Waste Acceptance Criteria limits in this report are provided for guidance only.

Chemtech Environmental Ltd does not take responsibility for any errors or omissions. Data is correct as of 01/09/2005.

Samples will be disposed of 6 weeks from initial receipt unless written instructions are received and further storage is agreed.

Waste Acceptance Criteria testing is outside the scope of the laboratory's UKAS accreditation.

| Comme | nts |
|-------|-----|
|-------|-----|

Authorised by: \( \sqrt{\. Campbell} \) Name: John Campbell

Report date: 18 December 2014 Position: Director